Project Details		
Project Code	MRCIIAR24Ba Brown	
Title	How are changing environments on our farms driving antifungal	
	resistance in clinical fungal pathogens?	
Research Theme	Infection, Immunity, Antimicrobial Resistance & Repair	
Summary	Fungal pathogens cause deadly human infections, destroy our crops, and	
	contaminate our food with toxins. Fungal pathogens of people are also	
	present on our farms. Worryingly, we rely on a few antifungals to cure	
	human infection and to secure our safe food supply. Here, we aim to	
	understand how our changing environments and use of antifungals on	
	farms may drive human pathogens to evolve cross-resistance to clinical	
	treatments that result in poor patient outcomes.	
Description	THE FUNGAL THREAT: Fungal pathogens cause deadly human infections,	
	destroy our crops, and poison our food with harmful toxins. Despite our	
	best efforts, we still lose 10% of our crops to fungal diseases, 25% of all	
	food is contaminated with fungal toxins, and human infections have	
	extremely high mortality rates. Worryingly, our population is becoming	
	more vulnerable to infection, as the numbers of susceptible patients	
	with immune disorders, major trauma, or viral co-infections rises.	
	ENVIRONMENTALLY ACQUIRED RESISTANCE: We rely on a few	
	antifungals to secure our safe food supply and to cure human infection.	
	This has created a perfect storm for the evolution of antifungal	
	resistance (AFR), as many of the major fungal pathogens of people are	
	also present on arable farms. It is believed that the exposure of	
	pathogens to agricultural antifungals has driven the evolution of cross-	
	resistance to similar antifungais in hospitals, termed environmentally	
	acquired resistance. Examples include Aspergini and Fusaria which cause	
	where antifungal resistance has been reported to contribute to poor	
	treatment outcomes. But what is driving the threat of environmentally	
	acquired resistance, is it changes to our environment or altered	
	agricultural practices? And where on our farms are these nathogens	
	acquiring AFR? DIRECTED EVOLUTION. We will evolve Aspergillus and	
	Eusarium species under conditions that replicate our changing	
	agricultural environments in the presence of differing levels of	
	agricultural antifungals. These environmental stresses will replicate the	
	impacts of climate change and agricultural intensification, i.e.	
	temperature, humidity, salt, and pH stress. Evolved and non-evolved	
	strains will harbour constitutive GFP or RFP markers to facilitate	
	comparative minimum inhibitory concentration (MIC) and competition	
	assays, which will evaluate how adaptations to different stresses confer	
	resistance to different antifungals. Competition assays and fitness cost	
	experiments will be used to model how these adaptations may influence	
	the structure of the fungal population. This will enable us to study which	
	scenarios are driving the rise in environmentally acquired resistance on	
	our farms. For example, does the use of irrigation in agriculture, which	
	increases soil salinity, drive soil dwelling fungi such as Aspergilli and	
	Fusaria to evolve stress tolerance mechanisms that promote AFR to both	
	agricultural and clinical antifungals? Or, will future climatic	
	environmental stress increase the rate at which AFR evolves? We will	
	use genomics and RNA sequencing to identify genetic changes acquired	

through exposure to stress and antifungals, in multiple fungal lineages
with phenotypic adaptations. Finally, CRISPR-Cas9 genome editing will
be used to confirm these genetic adaptations confer phenotypic
adaptations that enhance environmental stress tolerance and AFR
evolution. PATHOGEN COMMUNITIES: We will sample distinct arable
environments (crops, soils, residues) throughout the farming year to
create a collection of Aspergillus and Fusarium species, supported by
industry collaborations with Agrii, Syngenta and Eurofins field trialists.
Monoclonal antibody diagnostics will be supported by Prof. Thornton
ISCA Diagnostics. This collection will be used to monitor how pathogen
aggressiveness, stress tolerance, toxin production and AFR profiles
change in response to altered practices and environments. Comparative
genomics will be used to identify the genetic basis of adaptation in
natural pathogens, to be correlated with lab-evolved strains.
IMPORTANCE: This research will help determine what is driving
environmentally acquired resistance on our farms. This knowledge will
support the development of improved farming practices and national
risk mitigation policies, protecting the shelf-life of our limited
antifungals, to the benefit of our food security and human health.
Supervisory Team

Lead Supervisor		
Name	Dr Neil Brown	
Affiliation	Bath	
College/Faculty	Milner Centre for Evolution	
Department/School	Department of Life Sciences	
Email Address	n.a.brown@bath.ac.uk	
Co-Supervisor 1		
Name	Dr Daniel Henk	
Affiliation	Bath	
College/Faculty	Milner Centre for Evolution	
Department/School	Department for Life Sciences	
Co-Supervisor 2		
Name	Dr Helen Eyles	
Affiliation	Exeter	
College/Faculty		
Department/School	Biosciences	
Co-Supervisor 3		
Name	Professor William Gaze	
Affiliation	Exeter	
College/Faculty	European Centre for Environment and Human Health	
Department/School		