Project Details		
Project Code	MRCIIAR24Br Weavers	
Title	The impact of microplastics on immune health: are novel bio-derived	
	polymers a safer alternative?	
Research Theme	Infection, Immunity, Antimicrobial Resistance & Repair	
Summary	Humans are estimated to consume millions of microplastics (MPs) each	
	year, but their impact on our health remains unclear. In this project, we	
	will explore how MPs interact with cells of the immune system and	
	decipher why these interactions might suppress the immune response	
	(e.g. to pathogens). By combining in vivo animal models with in vitro	
	analyses of human cells and state-of-the-art imaging, we will then test	
	whether novel bioplastics are safer alternatives.	
Description	Background: Microplastics (MPs) – microscopic plastic particles smaller	
	than 5mm – are increasingly prevalent in our environment. MPs are now	
	recognised as a growing threat to human and marine health. Recent	
	studies have suggested that humans consume over 10,000 MPs a year,	
	through both ingestion and airborne routes. Strikingly, MPs have been	
	found in a huge variety of human and animal tissues, suggesting that	
	once consumed, they disseminate widely through the body. However,	
	the impact of MP exposure on our cells, tissues and overall health	
	remains immensely unexplored. Recent in vitro studies have revealed	
	that MPs can enter many human cell types (including the cells that make	
	up our immune system) and can even cross the blood brain barrier. Once	
	inside cells, MPs have the potential to trigger extensive cellular damage	
	and even cell death. However, it remains unclear exactly how cells	
	Interact with MPs and what the consequences of MP uptake are on	
	cellular function, as well as long-term health. There is a clear need for	
	cutting-edge research to investigate the effects of MP exposure across	
	scales – from the biochemical effects at the cellular level, through to	
	Research: This is an inter disciplinary project, combining in vivo animal	
	models with in vitro studies of mammalian and human cells along side	
	synthetic chemistry. It huilds on exciting data from the lab showing that	
	MPs accumulate within immune cells (e.g. macronhages) which are	
	specialised for clearing invaders (such as pathogens). We are eager to	
	explore how MPs interact with cells of the immune system and whether	
	excessive MP uptake causes immune suppression (including problems	
	fighting infection) or even exacerbates antimicrobial resistance. In this	
	project we will investigate: 1. How cells of the immune system (e.g.	
	macrophages or microglia) interact with MPs at the molecular level 2.	
	The consequences of MP accumulation on cell health and	
	function e.g. the immune response to infection 3. If newly	
	developed sustainable (biodegradable) polymers offer a biologically	
	safer alternative There are extensive opportunities for the student to	
	steer the project, including aiding the design of novel bioplastics. The	
	student will learn skills in experimental in vivo and in vitro cell biology, as	
	well as quantitative biology and bioinformatics. They will also be trained	
	in polymer synthesis techniques to participate in the design of	
	innovative bioplastics. The in vivo studies will involve state-of-the-art live	
	imaging, genetic manipulation, omics and molecular biology within	
	Drosophila, and be complemented by cutting-edge in vitro assays using	

	cultured mammalian and human cells. By synthesising our own bespoke MPs (including commercial bioderived plastics or novel sugar-based polymers developed at Bath), we will explore exactly how polymer	
	material and particle size influences the downstream biological effects.	
Supervisory Team		
Lead Supervisor		
Name	Dr Helen Weavers	
Affiliation	Bristol	
College/Faculty	Life Sciences	
Department/School	Biochemistry	
Email Address	helen.weavers@bristol.ac.uk	
Co-Supervisor 1		
Name	Dr Antoine Buchard	
Affiliation	Bath	
College/Faculty	Centre for Sustainable and Circular Technologies (CSCT)	
Department/School	Chemistry	
Co-Supervisor 2		
Name	Dr Owen Peters	
Affiliation	Cardiff	
College/Faculty	School of Biosciences, University of Cardiff	
Department/School		
Co-Supervisor 3		
Name		
Affiliation		
College/Faculty		
Department/School		