	Project Details
Project Code	MRCIIAR24Ca Bliss
Title	Developing virus-based cancer vaccines with molecular enhancers
Research Theme	Infection, Immunity, Antimicrobial Resistance & Repair
Summary	Cancer immunotherapy has revolutionised the field of oncology. This
, , , , , , , , , , , , , , , , , , ,	project uses molecular enhancement of an established vaccine platform
	to develop cancer vaccines with increased potency. The project will
	harness the power of extracellular vesicles to augment vaccine-induced
	T cell immunity against cancer and oncogenic viruses, using
	interdisciplinary in vitro, ex vivo and in vivo (zebrafish, mice)
	methodologies and approaches.
Description	AIM: Develop adenoviral (Ad) vectors as cancer vaccines by encoding
	cancer-specific antigens and enhance induction of anti-cancer T cells
	using novel molecular adjuvanting techniques. BACKGROUND &
	SIGNIFICANCE: The COVID-19 pandemic highlighted the impact of
	vaccination, utilising platform delivery technologies such as Ad vectors
	as prophylactic vaccines. Vaccine efficacy relies on induction of immune
	responses, including T cells that target a disease-specific protein, termed
	antigen. This approach can be applied to the development of therapeutic
	cancer vaccines, to drive the body's own immune system to eliminate
	cancer through induction of strong T cell immunity against cancer
	antigens. Cancer antigens are often identified as "self" by the body's
	immune system, and therefore require particularly strong immune
	stimulation to break this immune tolerance. The Ad vector platform is
	proven to induce potent T cell responses against viral proteins and is
	therefore a promising candidate platform to develop as cancer vaccines.
	To enhance the Ad platform, this research harnesses the power of the
	body's natural cell-to-cell communication system of protein transport
	comprising of extracellular vesicles (EVs), to further increase vaccine
	immunogenicity. PROJECT OVERVIEW: Implement "Exosome Display"
	by tethering cancer antigens to small EVs (namely exosomes) using Ad
	vectors as the delivery platform, as a mechanism by which to enhance
	antigen dissemination and immune recognition of vaccine antigens, and
	evaluate the technology as a cancer immunotherapy. AIM 1: Explore
	Ad vector platform compatible methodologies to tether proteins to the
	surface of EVs and confirm tethering using in vitro assays. This objective
	will evaluate different exosome targeting motifs, their intracellular
	trafficking and EV specificity, using both model and cancer antigens.
	AIM 2: Deploy the "Exosome Display" technology in zebrafish to define
	antigen biodistribution following in vivo tethering to exosomes. This
	includes live imaging of endogenously produced antigen-tethered
	exosomes, identifying the spatio-temporal distribution and specific cell
	types involved in EV release/uptake, in addition to characterising early
	innate immune stimulation in transgenic zebrafish. AIM 3: Evaluate
	the technology as pre-clinical therapeutic cancer immunotherapy in
	mice. This will utilise well-characterised oncogenic viral antigens/cancer
	antigens combined with the optimised "Exosome Display" approach as a
	vaccination strategy, delivered by encoding the full technology in the Ad
	vector platform. Downstream immune responses and vaccine efficacy to
	be measured in mouse immuno-oncology models of disease.
	TRAINING: The student will receive expert training in tissue culture,

exosome biology, molecular virology, immunological techniques, cellular genetic manipulation, rodent/fish husbandry and procedures. This will equip the researcher with the skills to develop hypotheses, design and execute experiments, and obtain outputs to explore the research question. Extensive opportunities to communicate research across multiple platforms will include lay audiences during public engagement activities, and academic and industrial research scientists at internal and external meetings. Supported by the supervisory team, the student will steer the project in a number of ways, including but not limited to: 1) Identification and down-selection of tethering motifs for characterisation (support by Bliss/Richardson) 2) Selection and generation of fluorescent, transgenic zebrafish to study biodistribution of EVs using established zebrafish models (support by Richardson) 3) Identification of appropriate antigens for Exosome Display, supported by established mouse models of infection/disease (support by Bliss/Parker) 4) Application of appropriate Ad vectors to encode the technology, using a large panel of Ad vectors already under development (support by Parker/Bliss).

Supervisory Team		
Lead Supervisor		
Name	Dr Carly Bliss	
Affiliation	Cardiff	
College/Faculty	College of Biomedical and Life Sciences	
Department/School	School of Medicine	
Email Address	BlissC@Cardiff.ac.uk	
Co-Supervisor 1		
Name	Dr Rebecca Richardson	
Affiliation	Bristol	
College/Faculty	Faculty of Life Sciences	
Department/School	School of Physiology, Pharmacology & Neuroscience	
Co-Supervisor 2		
Name	Professor Alan Parker	
Affiliation	Cardiff	
College/Faculty	College of Biomedical and Life Sciences	
Department/School	School of Medicine	
Co-Supervisor 3		
Name		
Affiliation		
College/Faculty		
Department/School		