Project Details		
Project Code	MRCIIAR24Ca Peters	
Title	Epigenetic regulation of microglial gene expression in Alzheimer's disease	
Research Theme	Infection, Immunity, Antimicrobial Resistance & Repair	
Summary	Neuroinflammation is a prominent event Alzheimer's disease (AD) pathogenesis driven by activation of microglia, the brains resident immune cells. To define how microglial gene expression is regulated in AD, this project utilises a state-of-the-art human stem cell culture model of AD coupled with epigenomic profiling and bioinformatic analysis. The role of prioritised genes will then be described through functional assays of important microglial processes.	
Description	Neuroinflammation is emerging as a key pathogenetic event contributing to risk and progression of Alzheimer's disease (AD). Genome wide association studies have identified single nucleotide polymorphisms (SNPs) at genetic loci associated with microglia function enriched in AD patient cohorts, however precisely how these alter gene expression within loci is often unclear. Profiling transcriptional regulation of AD associated gene by epigenome wide association studies of post-mortem human cortex has identified enriched patterns of DNA methylation in microglial genes of AD patients. Whilst further illuminating the contribution of microglia in AD pathogenesis, a caveat of these experiments is the tissue utilised; post-mortem samples of mixed cell types derived from patients dying with late-stage AD with profound neurodegeneration and inflammation. Such tissues may not capture more subtle, early changes in epigenomic regulation. To better understand these events, we will profile the epigenome of human microglia in an in vitro co-culture model of AD, hypothesising that essential microglia specific genes in AD. Aim 1: To define epigenetic regulation of microglia genes associated with extracellular amyloid 1a. To generate an AD relevant population of microglia for epigenomic profiling, a human induced pluripotent stem cell (hiPSC) model of amyloid accumulation will be utilised. KOLF2 hiPSCs will be differentiated to the following microglia/mature cortical neuron co- cultures: 1) wild type neurons, wild type microglia (AD co-culture). Microglia will next be enriched from the co-cultures using CD11 magnetic beads (MACS) for cell separation and genomic DNA and RNA isolation. 1b. To define the genome wide patterns of DNA methylation and gene regulation, microglia DNA and RNA collected from WT or AD co-cultures will undergo quantitative genome wide profiling. Epigenomic and transcriptomic profiles will be bioinformatically analysed using established analysis pipelines and bioinformatic approaches. From these data, prioritis	

associated regulation of genes in prioritised loci will be further validated by qPCR and/or antibody staining, assessing microglia in either WT or APP co-cultures. From this we will triage 3 genes where methylation is associated with robust changes in expression for further analysis. We will next optimise and validate mis-expression of the three lead genes in hiPSC microglia, utilising CRISPRi for gene disruption (Cas9-KREB, CLYBL safe harbour integration) or CRISPRa (dCas9-VP64) for activation (transgenic siRNA/cDNA as contingency). Altered gene expression will be confirmed by qPCR, western blotting and immunostaining. 2b. ADrelevant microglia phenotypes will be assessed in microglia misexpressing the lead candidate genes. Assays will include inflammatory responses of microglia stimulated with INFY/LPS, quantified by cytokine release via a flow cytometry-based immunoassay (BD cytokine bead array); changes in morphology and motility of INFY/LPS stimulated microglia in neuronal WT and AD co-cultures; and phagocytosis of pHrodo labelled E. coli or fluorescent amyloid oligomers assessed by live imaging (Opera Phenix). Our approach will define AD relevant epigenetic regulation of microglia and explore how altered expression of these genes contributes to neuroinflammatory function.

Supervisory Team	
Lead Supervisor	
Name	Dr Owen Peters
Affiliation	Cardiff
College/Faculty	Biomedical and Life Sciences
Department/School	School of Biosciences / UKDRI
Email Address	PetersOM@cardiff.ac.uk
Co-Supervisor 1	
Name	Dr Kimberley Jones
Affiliation	Cardiff
College/Faculty	Biomedical and Life Sciences
Department/School	School of Biosciences
Co-Supervisor 2	
Name	Dr Emma Dempster
Affiliation	Exeter
College/Faculty	Medical School
Department/School	Complex Disease Epigenetics Group
Co-Supervisor 3	
Name	Professor Jonathan Mill
Affiliation	
College/Faculty	Medical School
Department/School	Complex Disease Epigenetics Group

Supervisory Tea