	Project Details
Project Code	MRCIIAR24Ca Serpi
Title	Fighting antimicrobial resistance by stopping bacterial cell division.
Research Theme	Infection, Immunity, Antimicrobial Resistance & Repair
Summary	The continuing rise of antimicrobial resistance has led to the failure of
	antibiotics to treat common infections. This project proposes to develop
	novel antimicrobials that target bacterial cell division, a crucial step for
	bacterial replication and survival. We will combine our expertise in
	medicinal chemistry and microbiology to design molecules that, acting
	like "Trojan horses", cross the bacterial cell envelope and once inside
	become toxic and kill the bacteria.
Description	Background: Despite antibiotics crucial role in saving millions of lives,
	they have proven to become significantly less effective in treating
	common infections due to the spread of Antimicrobial Resistance (AMR).
	Among the most promising targets for the discovery of novel classes of
	broad-spectrum antimicrobials is bacterial cell division, a process
	orchestrated by the filamenting temperature-sensitive mutant Z (FtsZ)
	protein, whose effective inhibition stops cell division, triggers its
	enlargement and subsequent lysis, followed by bacteria death. FtsZ
	guanosine triphosphate (GTP) binding site is widely conserved
	throughout the bacterial species and no drug resistant GTP binding site
	mutants have been reported so far, presumably because it is essential
	for the GTP correct recognition. GTP analogues with small hydrophobic
	substituents at C8 of the nucleobase have been reported to efficiently
	inhibit FtsZ polymerization and GTPase activity, without inhibiting its
	eukaryotic homologue tubulin, likely due to their low sequence
	similarity. Although potent and selective FtsZ inhibitors, these
	compounds were devoid of antibacterial activity as the could not pass
	the bacterial cell envelope, which is practically impermeable for the
	highly polar, negatively charged phosphates group of the nucleotides.
	Key research question. Could nucleotide Ftsz inhibitors be developed as
	antibiotics to fight AMR? One major challenge in antibiotic drug
	discovery is indeed to develop molecules able to rapidly penetrate the
	bacterial cell envelope to achieve a lethal intracellular drug
	accumulation. To enable nucleotide FtsZ inhibitors to cross the bacterial
	cell envelope, we propose to temporary block the free phosphonic
	functional group of the molecule, masking its acidic oxygen atoms with
	metabolically labile and non-toxic protecting groups to produce a
	charge-neutral compound (prodrug). Such prodrugs with increased
	lipophilicity, will cross the bacterial cell wall and once inside upon
	activation will release the antimicrobial drug. As additional advantage
	these prodrugs having one or more phosphate groups attached to the
	nucleoside, do not require all the phosphorylation steps decreasing the
	chance for the bacteria to become resistance through mutation of the
	phosphorylating enzymes. Phosphate prodrug approaches have been
	successfully applied to antiviral and anticancer nucleoside analogues
	with many of these drugs reaching the clinic. It is extremely important to
	establish if such powerful technologies have the potential to lead to
	novel therapeutics to fight AMR. Objective 1 is the design and synthesis
	of prodrugs masking only the last phosphate group while keeping the
	others partially charged to stabilize the anhydride bonds. The student

will investigate prodrugs, whose intracellular cleavage is based on an entirely pH-driven chemical hydrolysis or enzymatic activation processes. They will also optimize the nucleoside scaffold using in silico studies to identify more potent inhibitors. Objective 2 is the prodrugs chemical and enzymatic stability and their activation study by bacterial enzymes using HPLC to determine the half-lives and LCMS to identify metabolites. Objective 3 is the evaluation of the in vitro prodrugs antibacterial, antibiofilm activity in planktonic culture as well as biofilm of multiple isolates of multi drug resistant bacteria and toxicity in human cell lines. We will examine cell division using fluorescence microscopy in FtsZ green fluorescent protein labelled bacteria. Objective 4 is the study on the bacterial response to the novel prodrugs to establish if they can escape pre-existing resistance mechanisms. We will examine phenotypic responses to prodrugs, conducting real-time diffusion-mutation assays and microfluidic single-cell experiments. In summary this research will generate new knowledge, insight, and novel antibacterial molecules which will contribute to counteract the continuing emergence and spread of AMR.

Supervisory Team		
Lead Supervisor		
Name	Dr Michaela Serpi	
Affiliation	Cardiff	
College/Faculty	College of Physical Sciences and Engineering	
Department/School	School of Chemistry	
Email Address	serpim5@cardiff.ac.uk	
Co-Supervisor 1		
Name	Dr Maisem Laabei	
Affiliation	Bath	
College/Faculty	Faculty of Science	
Department/School	Biology & Biochemistry	
Co-Supervisor 2		
Name	Dr Tobias Bergmiller	
Affiliation	Exeter	
College/Faculty	Biosciences	
Department/School	Living Systems Institute	
Co-Supervisor 3		
Name	Professor Ian Fallis	
Affiliation	Cardiff	
College/Faculty	College of Physical Sciences and Engineering	
Department/School	School of Chemistry	