Project Details			
MRCNMH24Ba Nogaret			
Single-shot diagnosis of ion channel dysfunction in neurological disease			
rom data assimilation of cell membrane dynamics			
Neuroscience & Mental Health			
on channel mutations play an increasingly recognised role in Epilepsy and Alzheimer's disease. This project will apply inverse computational methods to infer ion channel dysfunction from time series analysis of electrophysiological recordings. The link between anomalous electrical activity in the brain and channelopathies that will be established by this studentship will identify new therapeutic targets for neurological disease.			
Many neurological diseases originate in the dysfunction of cellular ion channels. Their diagnosis presents a challenge especially when alterations in the complement of ion channels are a priori unknown. Current approaches based on voltage clamps lack the throughput necessary to identify the mutations causing changes in electrical activity. Here, we introduce a single-shot method for diagnosing changes in the complement of ion channels from changes in the electrical activity of a scell. We developed data assimilation to estimate the parameters of ndividual ion channels and from these parameters reconstruct the ionic currents of hippocampal CA1 neurons to within +/-11% of their actual value. DA correctly predicts which ionic current is altered and by how much after we blocked the BK, SK, A and HCN channels with selective intagonists of known potency. We now aim with this studentship to dentify the alterations in ion channels induced by genetic mutations in neurological disease. This is critically important to correctly diagnose channelopathies, improve drug screening and help design optimal reatment strategies. The work programme aims to estimate the ion channel parameters that govern gate kinetics, activation thresholds and onic conductances and their alteration by neurological disease: epilepsy and Alzheimer disease. At Bath, the student will learn to use powerful data assimilation computational techniques to infer the full complement of ion channels by synchronizing a multichannel conductance model to ime series current clamp recordings (Nogaret et al., Sci. Rep. 6, (2016) 82749, Abu-Hassan et al., Nature Comm. 10 (2019) 5309). The method has proven its success in transferring information from biological data to conductance models by predicting neuronal dynamics and by estimating he selectivity and potency of ion channel antagonists in hippocampal neurons. The breakthrough this studentship will make will be to adapt data assimilation to diagnosing neurological disease and establishing a quantitative link betwe			
listing of the second of the second			

analyse with the data assimilation algorithm developed in Bath. At
the University of Exeter, the student will learn to prepare brain slices of
transgenic mouse models of Alzheimer's disease and obtain
electrophysiological recordings of both diseased and control neurons. To
assess the performance of the data assimilation method in predicting
how the expression levels of specific ion channels are altered in
Alzheimer's disease/epilepsy, single cell RNA sequencing will be
performed on the same cells from which recordings were taken.
Parameter estimates provided by the mathematical framework will be
compared to RNA expression levels following qPCR analysis. Once
validated, the quantitative model will be used to optimise drugs to
restore normal function in Alzheimer/Epileptic neurons. The data
assimilation method will help identify the channelopathies which are
relevant to the anomalous electrical activity. Unlike bottom-up methods
such as transcriptomics or proteomics, which identify all mutations but
are unable to tell which ones are functionally relevant, data assimilation
only infers those mutations that are functionally relevant. This provides
unique insight in the causes of disease and will identify therapeutic
targets.

Supervisory Team		
Lead Supervisor		
Name	Professor Alain Nogaret	
Affiliation	Bath	
College/Faculty	Science	
Department/School	Physics	
Email Address	A.R.Nogaret@bath.ac.uk	
Co-Supervisor 1		
Name	Dr James Hodge	
Affiliation	Bristol	
College/Faculty	Biomedical Sciences	
Department/School	School of Physiology, Pharmacology and Neuroscience	
Co-Supervisor 2		
Name	Dr Kyle Wedgwood	
Affiliation	Exeter	
College/Faculty	Living Systems Institute	
Department/School	Mathematics and Statistics	
Co-Supervisor 3		
Name	Professor Jon Brown	
Affiliation	Exeter	
College/Faculty	Medicine	
Department/School	Clinical and Biomedical Sciences	