Project CodeMRCNMH24Br AnastasiadesTitleUnderstanding the role of disease-causing NMDA receptor mutations in synaptic development and functionResearch ThemeNeuroscience & Mental HealthSummaryNeurodevelopmental disorders are a major global health burden. One main challenge is understanding how, despite influencing the same genes, individual mutations can cause distinct symptoms, that emerge at distinct stages of development. This project combines mouse genetics, high-throughput imaging, and sophisticated circuit and behavioural analyses to understand how mutations in the NMDA receptor gene NR2A cause changes to brain development and function.DescriptionNeurodevelopmental disorders, such as schizophrenia, are highly debilitating diseases that impact 1-2% of the global population. There is significant evidence for a genetic basis to these disorders, yet the underlying causal relationships between genes and symptoms are currently poorly understood. An example of this is mutations in the NR2A subunit of the glutamatergic NMDA receptor, which have been strongly linked to risk of developing schizophrenia, but where individual mutations in the GRIN2A gene cause distinct symptom presentation amongst patient groups. It is possible that this may occur because the mutations have disociable effects on brain development, for example preferentially impacting distinct brain areas or causing unique changes to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establis	Project Details		
TitleUnderstanding the role of disease-causing NMDA receptor mutations in synaptic development and functionResearch ThemeNeuroscience & Mental HealthSummaryNeurodevelopmental disorders are a major global health burden. One main challenge is understanding how, despite influencing the same genes, individual mutations can cause distinct symptoms, that emerge at distinct stages of development. This project combines mouse genetics, high-throughput imaging, and sophisticated circuit and behavioural analyses to understand how mutations in the NMDA receptor gene NR2A cause changes to brain development and function.DescriptionNeurodevelopmental disorders, such as schizophrenia, are highly debilitating diseases that impact 1-2% of the global population. There is significant evidence for a genetic basis to these disorders, yet the underlying causal relationships between genes and symptoms are currently poorly understood. An example of this is mutations in the NR2A subunit of the glutamatergic NMDA receptor, which have been strongly linked to risk of developing schizophrenia, but where individual mutations in the GRIN2A gene cause distinct symptom presentation amongst patient groups. It is possible that this may occur because the mutations have dissociable effects on brain development, for example preferentially impacting distinct brain areas or causing unique changes to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are	Project Code	MRCNMH24Br Anastasiades	
synaptic development and functionResearch ThemeNeuroscience & Mental HealthSummaryNeurodevelopmental disorders are a major global health burden. One main challenge is understanding how, despite influencing the same genes, individual mutations can cause distinct symptoms, that emerge at distinct stages of development. This project combines mouse genetics, high-throughput imaging, and sophisticated circuit and behavioural analyses to understand how mutations in the NMDA receptor gene NR2A cause changes to brain development and function.DescriptionNeurodevelopmental disorders, such as schizophrenia, are highly debilitating diseases that impact 1-2% of the global population. There is significant evidence for a genetic basis to these disorders, yet the underlying causal relationships between genes and symptoms are currently poorly understood. An example of this is mutations in the NR2A subunit of the glutamatergic NMDA receptor, which have been strongly linked to risk of developing schizophrenia, but where individual mutations in the GRIN2A gene cause distinct symptom presentation amongst patient groups. It is possible that this may occur because the mutations have dissociable effects on brain developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to	Title	Understanding the role of disease-causing NMDA receptor mutations in	
Research ThemeNeuroscience & Mental HealthSummaryNeurodevelopmental disorders are a major global health burden. One main challenge is understanding how, despite influencing the same genes, individual mutations can cause distinct symptoms, that emerge at distinct stages of development. This project combines mouse genetics, high-throughput imaging, and sophisticated circuit and behavioural analyses to understand how mutations in the NMDA receptor gene NR2A cause changes to brain development and function.DescriptionNeurodevelopmental disorders, such as schizophrenia, are highly debilitating diseases that impact 1-2% of the global population. There is significant evidence for a genetic basis to these disorders, yet the underlying causal relationships between genes and symptoms are currently poorly understood. An example of this is mutations in the NR2A subunit of the glutamatergic NMDA receptor, which have been strongly linked to risk of developing schizophrenia, but where individual mutations in the GRIN2A gene cause distinct symptom presentation amongst patient groups. It is possible that this may occur because the mutations have dissociable effects on brain development, for example preferentially impacting distinct brain areas or causing unique changes to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Asbby / Anastasiades) 2. Record electrophysiological properties from identified brain regi		synaptic development and function	
SummaryNeurodevelopmental disorders are a major global health burden. One main challenge is understanding how, despite influencing the same genes, individual mutations can cause distinct symptoms, that emerge at distinct stages of development. This project combines mouse genetics, high-throughput imaging, and sophisticated circuit and behavioural analyses to understand how mutations in the NMDA receptor gene NR2A cause changes to brain development and function.DescriptionNeurodevelopmental disorders, such as schizophrenia, are highly debilitating diseases that impact 1-2% of the global population. There is significant evidence for a genetic basis to these disorders, yet the underlying causal relationships between genes and symptoms are currently poorly understood. An example of this is mutations in the NR2A subunit of the glutamatergic NMDA receptor, which have been strongly linked to risk of developing schizophrenia, but where individual mutations in the GRIN2A gene cause distinct symptom presentation amongst patient groups. It is possible that this may occur because the mutations have dissociable effects on brain development, for example preferentially impacting distinct brain areas or causing unique changes to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur <b< th=""><th>Research Theme</th><th>Neuroscience & Mental Health</th></b<>	Research Theme	Neuroscience & Mental Health	
main challenge is understanding how, despite influencing the same genes, individual mutations can cause distinct symptoms, that emerge at distinct stages of development. This project combines mouse genetics, high-throughput imaging, and sophisticated circuit and behavioural analyses to understand how mutations in the NMDA receptor gene NR2A cause changes to brain development and function.DescriptionNeurodevelopmental disorders, such as schizophrenia, are highly debilitating diseases that impact 1-2% of the global population. There is significant evidence for a genetic basis to these disorders, yet the underlying causal relationships between genes and symptoms are currently poorly understood. An example of this is mutations in the NR2A subunit of the glutamatergic NMDA receptor, which have been strongly linked to risk of developing schizophrenia, but where individual mutations in the GRIN2A gene cause distinct symptom presentation amongst patient groups. It is possible that this may occur because the mutations have dissociable effects on brain development, for example preferentially impacting distinct brain areas or causing unique changes to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- through which this instructures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to	Summary	Neurodevelopmental disorders are a major global health burden. One	
genes, individual mutations can cause distinct symptoms, that emerge at distinct stages of development. This project combines mouse genetics, high-throughput imaging, and sophisticated circuit and behavioural analyses to understand how mutations in the NMDA receptor gene NR2A cause changes to brain development and function. Description Neurodevelopmental disorders, such as schizophrenia, are highly debilitating diseases that impact 1-2% of the global population. There is significant evidence for a genetic basis to these disorders, yet the underlying causal relationships between genes and symptoms are currently poorly understood. An example of this is mutations in the NR2A subunit of the glutamatergic NMDA receptor, which have been strongly linked to risk of developing schizophrenia, but where individual mutations in the GRIN2A gene cause distinct symptom presentation amongst patient groups. It is possible that this may occur because the mutations have dissociable effects on brain development, for example preferentially impacting distinct brain areas or causing unique changes to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		main challenge is understanding how, despite influencing the same	
distinct stages of development. This project combines mouse genetics, high-throughput imaging, and sophisticated circuit and behavioural analyses to understand how mutations in the NMDA receptor gene NR2A cause changes to brain development and function. Description Neurodevelopmental disorders, such as schizophrenia, are highly debilitating diseases that impact 1-2% of the global population. There is significant evidence for a genetic basis to these disorders, yet the underlying causal relationships between genes and symptoms are currently poorly understood. An example of this is mutations in the NR2A subunit of the glutamatergic NMDA receptor, which have been strongly linked to risk of developing schizophrenia, but where individual mutations in the GRIN2A gene cause distinct symptom presentation amongst patient groups. It is possible that this may occur because the mutations have dissociable effects on brain development, for example preferentially impacting distinct brain areas or causing unique changes to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		genes, individual mutations can cause distinct symptoms, that emerge at	
high-throughput imaging, and sophisticated circuit and behavioural analyses to understand how mutations in the NMDA receptor gene NR2A cause changes to brain development and function. Description Neurodevelopmental disorders, such as schizophrenia, are highly debilitating diseases that impact 1-2% of the global population. There is significant evidence for a genetic basis to these disorders, yet the underlying causal relationships between genes and symptoms are currently poorly understood. An example of this is mutations in the NR2A subunit of the glutamatergic NMDA receptor, which have been strongly linked to risk of developing schizophrenia, but where individual mutations in the GRIN2A gene cause distinct symptom presentation amongst patient groups. It is possible that this may occur because the mutations have dissociable effects on brain development, for example preferentially impacting distinct brain areas or causing unique changes to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		distinct stages of development. This project combines mouse genetics,	
analyses to understand how mutations in the NMDA receptor gene NR2A cause changes to brain development and function. Description Neurodevelopmental disorders, such as schizophrenia, are highly debilitating diseases that impact 1-2% of the global population. There is significant evidence for a genetic basis to these disorders, yet the underlying causal relationships between genes and symptoms are currently poorly understood. An example of this is mutations in the NR2A subunit of the glutamatergic NMDA receptor, which have been strongly linked to risk of developing schizophrenia, but where individual mutations in the GRIN2A gene cause distinct symptom presentation amongst patient groups. It is possible that this may occur because the mutations have dissociable effects on brain development, for example preferentially impacting distinct brain areas or causing unique changes to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		high-throughput imaging, and sophisticated circuit and behavioural	
NR2A cause changes to brain development and function.DescriptionNeurodevelopmental disorders, such as schizophrenia, are highly debilitating diseases that impact 1-2% of the global population. There is significant evidence for a genetic basis to these disorders, yet the underlying causal relationships between genes and symptoms are currently poorly understood. An example of this is mutations in the NR2A subunit of the glutamatergic NMDA receptor, which have been strongly linked to risk of developing schizophrenia, but where individual mutations in the GRIN2A gene cause distinct symptom presentation amongst patient groups. It is possible that this may occur because the mutations have dissociable effects on brain development, for example preferentially impacting distinct brain areas or causing unique changes to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		analyses to understand how mutations in the NMDA receptor gene	
Description Neurodevelopmental disorders, such as schizophrenia, are highly debilitating diseases that impact 1-2% of the global population. There is significant evidence for a genetic basis to these disorders, yet the underlying causal relationships between genes and symptoms are currently poorly understood. An example of this is mutations in the NR2A subunit of the glutamatergic NMDA receptor, which have been strongly linked to risk of developing schizophrenia, but where individual mutations in the GRIN2A gene cause distinct symptom presentation amongst patient groups. It is possible that this may occur because the mutations have dissociable effects on brain development, for example preferentially impacting distinct brain areas or causing unique changes to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high-throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		NR2A cause changes to brain development and function.	
debilitating diseases that impact 1-2% of the global population. There is significant evidence for a genetic basis to these disorders, yet the underlying causal relationships between genes and symptoms are currently poorly understood. An example of this is mutations in the NR2A subunit of the glutamatergic NMDA receptor, which have been strongly linked to risk of developing schizophrenia, but where individual mutations in the GRIN2A gene cause distinct symptom presentation amongst patient groups. It is possible that this may occur because the mutations have dissociable effects on brain development, for example preferentially impacting distinct brain areas or causing unique changes to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to	Description	Neurodevelopmental disorders, such as schizophrenia, are highly	
significant evidence for a genetic basis to these disorders, yet the underlying causal relationships between genes and symptoms are currently poorly understood. An example of this is mutations in the NR2A subunit of the glutamatergic NMDA receptor, which have been strongly linked to risk of developing schizophrenia, but where individual mutations in the GRIN2A gene cause distinct symptom presentation amongst patient groups. It is possible that this may occur because the mutations have dissociable effects on brain development, for example preferentially impacting distinct brain areas or causing unique changes to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		debilitating diseases that impact 1-2% of the global population. There is	
underlying causal relationships between genes and symptoms are currently poorly understood. An example of this is mutations in the NR2A subunit of the glutamatergic NMDA receptor, which have been strongly linked to risk of developing schizophrenia, but where individual mutations in the GRIN2A gene cause distinct symptom presentation amongst patient groups. It is possible that this may occur because the mutations have dissociable effects on brain development, for example preferentially impacting distinct brain areas or causing unique changes to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		significant evidence for a genetic basis to these disorders, yet the	
currently poorly understood. An example of this is mutations in the NR2A subunit of the glutamatergic NMDA receptor, which have been strongly linked to risk of developing schizophrenia, but where individual mutations in the GRIN2A gene cause distinct symptom presentation amongst patient groups. It is possible that this may occur because the mutations have dissociable effects on brain development, for example preferentially impacting distinct brain areas or causing unique changes to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		underlying causal relationships between genes and symptoms are	
NR2A subunit of the glutamatergic NMDA receptor, which have been strongly linked to risk of developing schizophrenia, but where individual mutations in the GRIN2A gene cause distinct symptom presentation amongst patient groups. It is possible that this may occur because the mutations have dissociable effects on brain development, for example preferentially impacting distinct brain areas or causing unique changes to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		currently poorly understood. An example of this is mutations in the	
strongly linked to risk of developing schizophrenia, but where individual mutations in the GRIN2A gene cause distinct symptom presentation amongst patient groups. It is possible that this may occur because the mutations have dissociable effects on brain development, for example preferentially impacting distinct brain areas or causing unique changes to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		NR2A subunit of the glutamatergic NMDA receptor, which have been	
amongst patient groups. It is possible that this may occur because the mutations have dissociable effects on brain development, for example preferentially impacting distinct brain areas or causing unique changes to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		strongly linked to risk of developing schizophrenia, but where individual	
amongst patient groups. It is possible that this may occur because the mutations have dissociable effects on brain development, for example preferentially impacting distinct brain areas or causing unique changes to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		mutations in the GRINZA gene cause distinct symptom presentation	
preferentially impacting distinct brain development, for example preferentially impacting distinct brain areas or causing unique changes to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		mutations have dissociable effects on brain development, for example	
to NMDA receptor function. To better understand the mechanisms through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		preferentially impacting distinct brain areas or causing unique changes	
through which this occurs, we propose to map the maturation of excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		to NMDA recentor function. To better understand the mechanisms	
excitatory (i.e glutamatergic) synapses across the developing mouse brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		through which this occurs, we propose to man the maturation of	
brain and compare changes between WT mice and two distinct GRIN2A mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		evolution of the glutamatergic) synanses across the developing mouse	
mutants. The main aims of the project are: 1. Perform high- throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		brain and compare changes between WT mice and two distinct GRIN2A	
throughput brain imaging of transgenic PSD95 mice across the whole brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		mutants. The main aims of the project are: 1. Perform high-	
brain to establish brain structures and developmental time points that are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		throughput brain imaging of transgenic PSD95 mice across the whole	
are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2. Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		brain to establish brain structures and developmental time points that	
Record electrophysiological properties from identified brain regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		are strongly impacted by GRIN2A mutations (Ashby / Anastasiades) 2.	
regions to understand the cellular and circuit level changes that occur (Anastasiades) 3. Perform behavioural analyses related to		Record electrophysiological properties from identified brain	
(Anastasiades) 3. Perform behavioural analyses related to		regions to understand the cellular and circuit level changes that occur	
		(Anastasiades) 3. Perform behavioural analyses related to	
identified brain regions to link cellular changes to behaviour (Isles)		identified brain regions to link cellular changes to behaviour (Isles)	
Recent work from the Anastasiades & Ashby labs has performed a		Recent work from the Anastasiades & Ashby labs has performed a	
developmental characterisation of transgenic mice where the		developmental characterisation of transgenic mice where the	
glutamatergic synaptic organiser PSD95 is tagged with GFP, allowing us		glutamatergic synaptic organiser PSD95 is tagged with GFP, allowing us	
to visualise synaptic development. Using support from an MRC		to visualise synaptic development. Using support from an MRC	
equipment grant, we have developed a pipeline that allows us to explore		equipment grant, we have developed a pipeline that allows us to explore	
changes in GFP fluorescence across the entire mouse brain, spanning		changes in GFP fluorescence across the entire mouse brain, spanning	
postnatal brain development. This project will explore how the		postnatal brain development. This project will explore how the	
developmental trajectories we have mapped in healthy mice are		developmental trajectories we have mapped in healthy mice are	
impacted in transgenic mice provided by the Mary Lyon Centre (MLC)		Impacted in transgenic mice provided by the Mary Lyon Centre (MLC)	
that express known disease-causing mutations in the NR2A subunit of		that express known disease-causing mutations in the NR2A subunit of	
the two transgonic lines to the PSDOE reporter. The student will then		the two transgonic lines to the PSDOE reporter. The student will there	
nerform whole brain tissue preparation and image CEP fluoreseenes to		ne two transgenic lines to the PSU35 reporter. The student will then	
uncover changes in PSD05 expression caused by the mutations. Pased on		perform whole brain ussue preparation and image GFP hubrescence to	
our current findings, we will focus on two main developmental pariods		our current findings, we will focus on two main developmental periods	
Early nostnatal nostnatal day (D)5-15 and adolescence D25-55. This will		Farly nostnatal nostnatal day (P)5-15 and adolescence P35-55 This will	

	highlight novel brain structures and circuits associated with neurodevelopmental disorders. To target these structures, we will then go in and perform slice electrophysiological recordings. This will involve measurements of cell morphology, intrinsic physiology and synaptic composition (for example AMPA/NMDA ratios). This will be facilitated by Anastastasiades expertise in optogenetic circuit interrogation and will provide key training in rodent stereotaxic surgery to allow opsin delivery to the intact brain. Finally, the student will perform behavioural analysis with Prof Isles focusing on behaviours linked to the brain structures and developmental time points identified in aims 1 and 2. In summary, these experiments benefit from the newly funded National Mouse Genetics Network in a project designed to link synaptic development to behaviour across the early life period in mouse models of schizophrenia. The students will benefit from being embedded in this network, facilitating training and development at Bristol, Cardiff and in visits to the MLC. The student will develop a powerful array of interdisciplinary skills that can be tailored to the interests of the student based on the experimental emphasis of the project, yielding impactful science and high-quality doctoral training.
	Supervisory Team
Lead Supervisor	1
Name	Dr Paul Anastasiades
Affiliation	Bristol
College/Faculty	Medical School
Department/School	Translational Health Sciences
Email Address	paul.anastasiades@bristol.ac.uk
Co-Supervisor 1	
Name	Dr Michael Ashby
Affiliation	Bristol
College/Faculty	Life Sciences
Department/School	Physiology, Pharmacology and Neuroscience
Co-Supervisor 2	
Name	Professor Anthony Isles
Affiliation	Cardiff
College/Faculty	
Department/School	
Co-Supervisor 3	
Name	
Affiliation	
College/Faculty	
Department/School	