	Project Details
Project Code	MRCNMH24Ex Housden
Title	Understanding motor neuron disease using a powerful combination of
	model systems
Research Theme	Neuroscience & Mental Health
Summary	The aim of this project is to understand the mechanisms that cause
,	motor neuron disease (MND) so that new treatments can be developed.
	This is important because MND is a devastating disease that results in
	death only three years after diagnosis. There are no cures and our
	understanding of why people develop the disease is limited. This project
	will use cutting edge techniques to investigate the mechanisms
	underlying MND, leading to effective therapies in the future.
Description	The aim of this project is to investigate the mechanisms underlying
	motor neurone disease (MND) to facilitate the development of new
	therapies in the future. This is important because MND has a short life
	expectancy (3 years from diagnosis), the impact on quality of life is
	severe and there are no effective treatments. There is therefore a clear
	need to gain a better understanding of the disease to inform the
	development of effective therapies. Our approach to uncovering
	mechanisms of MND is to use genetic interaction analysis to gain insight
	into the genes and pathways that are involved in loss of viability in MND
	cells. We have previously developed Drosophila cell culture models
	expressing mutant version of human proteins known to be associated
	with MND (SOD1, FUS and TDP43) and have demonstrated that these
	models share characteristics with human models of the disease (e.g.
	alterations in cell viability and protein localisation). Using these new
	models, we have screened for genetic interactions between two mutant
	forms of TDP43 and approximately 350 kinases. This has resulted in the
	identification of several candidate genetic interactions that are now
	being validated. In addition, we have profiled transcriptional changes
	that occur when mutant forms of TDP43 are expressed. These datasets
	provide a powerful basis for mechanistic analysis. A major problem in
	determining mechanisms of human disease is that knowledge and
	candidate therapies identified in cell culture systems are not always
	relevant in patients. We have developed methods to overcome this issue
	by cross comparing between cell models derived from distant genetic
	backgrounds. Specifically, by comparing Drosophila cells to human cells
	modelling the same disease, it is possible to distinguish mechanisms and drug targets that are relevant across diverse systems from those that are
	specific to one system. This results in mechanistic understanding and
	candidate drug targets with a high chance of relevance in the clinic. In
	this project, the student will compare results between Drosophila cells,
	Drosophila in vivo models and human iPSC models of MND to gain new
	knowledge of the underlying mechanisms that are likely to be relevant
	to patients. Initially, the student will build on our previous work by
	extending the genetic interaction screens to cover 150 additional genes
	for which clinically approved chemical inhibitors already exist (Objective
	1). By focusing on this gene set, identified genes and pathways have a
	high chance of rapid translation towards new therapies. Using these data
	combined with the previous screen results and the transcriptomic data,
	the student will then use computational approaches to map pathways
	Tradent iiii siicii aad dompatational approdones to map patriways

associated with MND (Objective 2). Finally, the student will investigate the identified pathways using two diverse models of MND. The first is an in vivo Drosophila model and the second is an iPSC model. By investigating these new pathways in Drosophila cells, in vivo and using human cell models, we can apply a filter to remove MND-linked mechanisms that are specific to a single model system and focus on those pathways that are common between diverse genetic environments. This greatly increases the chances that our results will be relevant to human patients. Objective 1: To map genetic interactions with 150 potential drug targets. Objective 2: To map biological pathways involved in MND using computation methods During this objective, the student will have the opportunity to guide the approach taken to data analysis. This includes identifying and applying the analysis methods that they deem to be most appropriate for the task, with guidance from Prof. Tsaneva. Objective 3: To validate novel MND pathways using human iPSC and Drosophila in vivo models The student will take ownership of the decision as to which genes and pathways to pursue with advice from the supervisors and their own literature-based analysis of the candidates.

Supervisory Team		
Lead Supervisor		
Name	Professor Benjamin Housden	
Affiliation	Exeter	
College/Faculty	Faculty of Health and Life Sciences	
Department/School	Clinical and Biomedical Sciences / Living Systems Institute	
Email Address	b.housden@exeter.ac.uk	
Co-Supervisor 1		
Name	Professor James Hodge	
Affiliation	Bristol	
College/Faculty	Life Sciences	
Department/School	Physiology, Pharmacology and Neuroscience	
Co-Supervisor 2		
Name	Professor Krasimira Tsaneva-Atanasova	
Affiliation	Exeter	
College/Faculty	Department of Mathematics	
Department/School	Living Systems Institute	
Co-Supervisor 3		
Name		
Affiliation		
College/Faculty		
Department/School		