Project Details		
Project Code	MRCNMH24Ex Migdalska-Richards	
Title	Epigenetic profiling in Parkinson's disease: novel mechanisms and drug	
	targets	
Research Theme	Neuroscience & Mental Health	
Summary	During this PhD, you will be one of the very first people to study the epigenetics of Parkinson's disease. You will determine and functionally evaluate the first-ever comprehensive microRNA profile in different brain regions of individuals with Parkinson's. This will involve combining	
	the exciting areas of epigenetics, bioinformatics and molecular biology. This work will improve mechanistic understanding and suggest novel drug targets for this devastating condition	
Description	Parkinson's disease (PD) is the most common human motor disorder	
	affecting ten million people worldwide. With an increasingly ageing population, prevalence is predicted to double by 2040. Parkinson's significantly contributes to the global burden of disease, costing the NHS	
	alone more than £1 billion/year. Currently, there are no treatments that can cure or modify the disease, so development of new therapies	
	that can slow, prevent or reverse PD progression are urgently required.	
	The few treatments that do exist only alleviate symptoms temporarily	
	Although some genetic components of Parkinson's have been identified	
	much is still unknown about the actiology. For example, the most	
	common genetic risk factor (GBA1) which accounts for ~85% of all	
	known genetic cases, shows incomplete penetrance, with only 30% of	
	GBA1-mutation carriers developing the disease. Further, PD	
	concordance rate between identical twins is only about 17%. This	
	indicates that non-DNA-sequence variation (i.e. epigenetics) is likely to	
	play a crucial role. Emerging work (including our own) shows that key	
	epigenetic processes, including DNA methylation, histone modifications	
	and microRNAs are significantly altered in the brains of people with	
	Parkinson's disease. This important fact has only very recently been	
	appreciated and there are currently no systematic epigenetic studies of	
	Parkinson's. This project will fill this gap. This project will focus on a	
	particular epigenetic mechanism, that of microRNAs. These are short	
	non-coding RNA molecules, on average 22 nucleotides in length, that are	
	directly involved in post-transcriptional downregulation of target gene	
	expression either by translational silencing of by mixing degradation.	
	it is now possible to accurately quantify microRNA differences with	
	unprecedented detail and coverage, using an unbiased approach that	
	does not pre-select candidate microRNAs. We can then start, for the first	
	time, to determine the role of microRNAs in Parkinson's. One of the	
	most exciting prospects from this is that the identified microRNA	
	changes are potentially reversible, and so better understanding the	
	microRNA variation would open up the tantalizing prospect of new epi-	
	drugs that could be used to treat this debilitating condition. During this	
	project, the student will learn a broad range of experimental and	
	theoretical skills, including microRNA profiling, cell culturing, microRNA	
	mimic and antagonist transfection (to examine biological effects of	
	specific microRNAs on cell function), and bioinformatics, including	

	microRNA target prediction and functional enrichment analysis of
	microRNA targets. Although mainly based at the University of Exeter, six
	months will be spent investigating functional aspects of microRNA
	analyses at the University of Bristol in the group of Professor James
	Uney. Further, through collaboration with interdisciplinary scientists at
	the Living Systems Institute, the student will have the opportunity to
	develop basic computational modelling skills in order to analyse
	microRNA-mediated gene regulatory networks. In addition, via
	collaboration with Catapult Medicines Discovery (CMD), the student's
	training will be further enhanced by regular visits to CMD for industrial
	experience. Finally, public involvement will play an important part of
	this PhD. This will build on existing links that we have recently developed
	with local Parkinson's support groups, particularly those in Okehampton,
	Crediton and Exmouth. The student will participate in a number of public
	workshops, where they will be able to explain their work and interact
	directly with individuals affected by Parkinson's disease.
Supervisory Team	
Lead Supervisor	
Name	Dr Anna Migdalska-Richards
Affiliation	Exeter
College/Faculty	Faculty of Health and Life Sciences
Department/School	Department of Clinical and Biomedical Sciences
Email Address	a.migdalska-richards@exeter.ac.uk
Co-Supervisor 1	
Name	Professor Lorna Harries
Affiliation	Exeter
College/Faculty	Faculty of Medicine and Health
Department/School	Department of Clinical and Biomedical Sciences
Co-Supervisor 2	
Name	Professor James Uney
Affiliation	Bristol
College/Faculty	Bristol Medical School
Department/School	Translational Health Sciences
Co-Supervisor 3	
Name	
Affiliation	
College/Faculty	
Department/School	