Project Details		
Project Code	MRCPHS24Br Lewis	
Title	Estimating the global cancer burden due to low levels of physical activity	
Research Theme	Population Health Sciences	
Summary	The student will estimate the overall global burden of cancer risk which	
	is due to low levels of physical activity using a combination of: i)	
	observational and Mendelian randomization analyses to estimate of the	
	causal effect of physical activity on cancer risk; and ii) global cancer	
	surveillance data and published data on physical activity rates to	
	estimate population attributable risks.	
Description	Around 40% of all cancers are thought to be avoidable by modification of	
	lifestyle factors. The World Cancer Research Fund (WCRF), as part of	
	their continuous update project, have concluded that there is strong	
	evidence that high levels of physical activity decreases the risk of cancers	
	of the breast, endometrium and colorectum. In addition, we have	
	recently shown using two-sample Mendelian randomization (MR) that	
	physical activity is inversely causally associated with prostate, colorectal	
	and breast cancer risk. In our analyses we found larger protective effects	
	of physical activity on cancers of the breast, prostate, colon and rectum	
	than were previously estimated. It is possible that cancers at other sites	
	are similarly causally influenced by physical activity but they have not yet	
	been investigated using a Mendelian randomization framework. Cancer surveillance data compiled and analysed by co-supervisor Dr	
	Freddie Bray's group at IARC has shown that 19.3 million new cancer	
	cases and almost 10 million cancer deaths occurred in 2020. They found	
	that the burden of cancer was rapidly increasing worldwide due to an	
	ageing population and in an increase in exposure to the major risk	
	factors. Guthold et al (2020) combined data from 358 population-based	
	surveys conducted across 168 countries to estimate that approximately	
	28% of adults worldwide had insufficient levels of physical activity.	
	However, the above findings were based on self-reported activity levels	
	which are subject to a high degree of measurement error and response	
	bias and may not reflect actual physical activity. The research problem	
	that the project aims to address is what is the global burden of cancer	
	due to physical inactivity? To achieve this aim, the student will address	
	the following objectives: 1. Identify the patterns of physical activity	
	which are most likely to be causing cancer using wrist-worn	
	accelerometer data and cancer outcomes in UK Biobank. 2. Test	
	whether low levels of physical activity is a causal risk factor for cancer at	
	several sites using Mendelian randomization and genome wide	
	association study data from large cancer consortia 3. Use the best	
	publicly available data to estimate the global prevalence of low levels of	
	physical activity by country/region/ethnicity. 4. Estimate the global	
	burden of cancer attributable to low levels of physical activity using	
	cancer surveillance data compiled by IARC broken down by	
	country/region and cancer type. Once the student is familiar with the	
	background to the research question, the strengths and limitations of	
	the data and the methods needed to carry-out this project, they will	
	(with support from the supervisors) design the analysis plan for each of	
	the objectives separately, determine which statistical models and which	
	exposure, confounder and outcome variables to use. The student will	

also set up their own project database for these analyses. There will be
an opportunity for the student to focus on some of the more interesting
findings in order to validate them or explore them in more depth, for
example the student may also want to replicate some findings from their
analyses using independent replication datasets and carry-out sensitivity
analyses to test the robustness of their findings or determine whether
they apply to different populations.

Supervisory Team		
Lead Supervisor		
Name	Professor Sarah Lewis	
Affiliation	Bristol	
College/Faculty	Health Sciences	
Department/School	Population Health Sciences	
Email Address	s.j.lewis@bristol.ac.uk	
Co-Supervisor 1		
Name	Dr Richard Pulsford	
Affiliation	Exeter	
College/Faculty	Faculty of Health Sciences	
Department/School	Sports and Health Sciences	
Co-Supervisor 2		
Name	Dr Freddie Bray	
Affiliation	Other	
College/Faculty		
Department/School	Cancer Surveillance Branch	
Co-Supervisor 3		
Name	Professor Richard Martin	
Affiliation	Bristol	
College/Faculty	Faculty of Health Sciences	
Department/School	Population Health Sciences	