Project Details		
Project Code	MRCPHS24Ex Freathy	
Title	Understanding how ethnic differences may influence diabetes diagnosis	
	and control in pregnancy	
Research Theme	Population Health Sciences	
Summary	When diabetes occurs in pregnancy, monitoring of maternal glucose is	
	crucial to avoid complications. HbA1c is a convenient test, increasingly	
	used to assess glucose control or detect new diabetes in at-risk women.	
	However, the effect of ethnic variation on HbA1c accuracy in pregnancy	
	is unclear. This PhD will address knowledge gaps using comprehensive	
	datasets, for targeted antenatal care. The student will receive full	
	training and support to publish their work.	
Description	Diabetes in pregnancy may result if a woman has pre-existing diabetes,	
	or may develop for the first time in pregnancy (gestational diabetes	
	mellitus, GDM). Obtaining an accurate picture of glycemia is vital since	
	high glucose levels can lead to adverse pregnancy outcomes. Glycated	
	naemoglobin (HDA1c) is a convenient non-rasting blood test, indicating	
	recommended for the diagnosis of CDM. However, there is increasing	
	interest in whether HbA1c might be useful for GDM prediction in early	
	nregnancy or diagnosis in late pregnancy because it correlates with risk	
	of complications and is far quicker and easier than an oral glucose	
	tolerance test (gold standard for GDM diagnosis) as it does not require	
	several hours of fasting. In some populations, at-risk women are	
	screened with HbA1c for pre-existing diabetes in early pregnancy. In the	
	UK, HbA1c is routinely used to evaluate glycaemic control in women who	
	are already known to have diabetes. However, HbA1c can be influenced	
	by variation in red blood cell characteristics, so its usefulness for	
	estimating glucose control varies between women. Conflicting evidence	
	suggests that HbA1c may underestimate glucose levels in pregnancy,	
	likely due to reduced haemoglobin levels. In contrast, iron deficiency	
	anaemia (which is common in pregnancy) can lead HbA1c to	
	overestimate glucose levels. As rates and causes of anaemia vary among	
	groups of different ethnicities, this can lead HbA1c accuracy also to vary	
	among those groups. Overall research question: What are the ethnic	
	similarities and differences in relationships between HbA1c and	
	measured glucose levels in pregnancy? For the analyses ethnic	
	similarity. Illtimately, this PhD may beln to identify women for whom	
	different glucose measures are more or less informative, and thereby	
	contribute to better targeted antenatal care. The student will be	
	supported to take ownership of the project from the start, with	
	opportunities to steer the work, guided by the following objectives: 1a.	
	Identify datasets in which pregnant women have HbA1c and fasting	
	(and/or post-load) glucose levels measured at the same time. Already,	
	data from >25,000 women in the multi-national HAPO and EFSOCH	
	studies are available. 1b. Investigate the relationship between HbA1c	
	and measured glucose from oral glucose tolerance testing (OGTT) in	
	pregnancy in women of different self-identified ethnicity. Analysis is	
	already feasible in existing datasets, and 1a will contribute more data.	
	2a. Find out how often HbA1c is tested in pregnancy in clinical practice,	

in women with & without known pre-pregnancy diabetes. Electronic health records may be accessed via Clinical Practice Research Datalink or Genes&Health. 2b. Investigate whether relationships between early pregnancy HbA1c and diagnosis of pre-existing diabetes vary by ethnicity. 3a. Understand the role of genetic factors in the relationship between HbA1c and glucose levels in pregnancy in samples of different genetic similarity. There are known genetic variants which influence HbA1c via their effect on red bood cell characteristics or via their effect on glucose levels, but these have not been studied in pregnancy. 3b. Investigate whether genetics can help us to understand why the relationship between maternal glucose levels and birth weight varies across groups of different genetic similarity. All genetic analyses are highly feasible in existing samples. Rich datasets are available for analyses, including >30,000 mother-child pairs of multiple ethnicities from various cohorts, and potential for analysis of hundreds of thousands of women with electronic health records. The supervisory team have leading roles in large genetics consortia: Diabetes in Pregnancy, MAGIC (glycemic traits) and EGG (early growth) Consortia, which will directly enhance the PhD.

Supervisory ream	
Lead Supervisor	
Name	Dr Rachel Freathy
Affiliation	Exeter
College/Faculty	Faculty of Health and Life Sciences
Department/School	Dept of Clinical and Biomedical Sciences
Email Address	r.freathy@exeter.ac.uk
Co-Supervisor 1	
Name	Dr Carolina Borges
Affiliation	Bristol
College/Faculty	Population Health Science
Department/School	MRC Integrative Epidemiology Unit
Co-Supervisor 2	
Name	Dr Alice Hughes
Affiliation	Exeter
College/Faculty	Faculty of Health and Life Sciences
Department/School	Dept of Clinical and Biomedical Sciences
Co-Supervisor 3	
Name	Professor Inês Barroso
Affiliation	Exeter
College/Faculty	Faculty of Health and Life Sciences
Department/School	Dept of Clinical and Biomedical Sciences