Project Details	
Project Code	MRCPHS24Ex Kelson
Title	Using modelling approaches to reduce inequality in physical activity
Posoarch Thoma	Population Health Sciences
Summany	Population Health Sciences
Summary	interventions that increase population-level physical activity (e.g. traffic
	calming measures or cycle naths to promote active commuting) Many
	interventions however have differential impacts for different people. We
	propose combining advanced simulation & modelling approaches to
	provide estimates of effectiveness of various interventions & identify
	, likely resulting inequalities.
Description	**Background** Physical activity is known to improve people's health
	and wellbeing. Policy makers at all levels are interested in promoting
	behaviours that are good for public health. Interventions to increase
	physical activity are often complex and intervening in a real-world
	system can often have unintended consequences, including exacerbating
	inequalities. There is therefore a growing need for analysis methods
	that can properly capture the complexity of health and social systems
	and model interventions within them. Hybrid simulation is one such
	approach. In hybrid simulation, two (or more) different types of
	simulation models are combined in order to harness the benefits of
	each. Here we propose combining agent based modelling (to allow for
	the rich and complex nature of numans living within societies) with
	system dynamics modelling, an approach which attempts to explicitly model higher level effects and the interplay of system level features.
	The combination of these approaches would allow us to model complex
	nhysical activity interventions, such as traffic calming measures in a
	neighbourbood and provide estimates of their effectiveness **Key
	research question** Can we use hybrid simulation to provide evidence
	of effectiveness for population-level physical activity interventions and
	identify early evidence of inequalities in benefit? **Project aims** The
	specific objectives would be 1. To understand and build an agent-based
	model based on current resources and tailored to physical activity 2.
	To understand and build a system dynamics model to explore
	high level interventions 3. To develop a hybrid model that
	combines both approaches. 4. To test and validate the model using
	case studies that will be developed throughout the PhD **Areas for
	ownership** The case studies of application are deliberately left open
	for the student to steer the project towards particular areas of interest.
Supervisory Team	
Name	Professor Mark Kelson
Affiliation	Fxeter
College/Faculty	Environment, Science and Economy
Department/School	Mathematics and Statistics
Email Address	m.j.kelson@exeter.ac.uk
Co-Supervisor 1	
Name	Professor Russ Jago
Affiliation	Bristol
College/Faculty	Health Sciences

Department/School	Bristol Medical School
Co-Supervisor 2	
Name	Professor Tom Monks
Affiliation	Exeter
College/Faculty	Health and Life Sciences
Department/School	University of Exeter Medical School
Co-Supervisor 3	
Name	
Affiliation	
College/Faculty	
Department/School	