Project Details	
Project Code	MRCIIAR25Ba Preston
Title	Airborne transmission of pathogens: defining microbial and
	environmental factors affecting survival in aerosols.
Research Theme	Infection, Immunity, Antimicrobial Resistance & Repair
Summary	Numerous bacteria transmit between hosts via the air, representing a
	key step in the pathogen lifecycle. However, we know little about the
	microbial and environmental factors that impact pathogen survival
	during airborne transmission. This is largely because it is difficult to study
	them in tiny droplets (aerosols), which are an environment unlike any
	other. This project combines molecular microbiology, genomics and a
	unique aerosol survival model to study how bacteria adapt under the
	unique conditions found in aerosols. Elucidating these processes and
	how the environment affects them will aid the development of novel
	interventions to interrupt airborne transmission.
Description	During human-to-human aerosol transmission bacteria are present in
	droplets of high surface-to-volume ratio and must survive in droplets
	with compositions uniquely accessed in the aerosol phase. For example,
	typical salts in respiratory fluids can reach supersaturated
	concentrations many times their solubility limits at ambient relative
	numidities (RHs) with the aerosol remaining in solution form rather than
	crystallising. This places a significant osmotic stress on bacteria that
	cannot be replicated in a bulk solution. Most studies of bacteria use
	dreplate typically growth on the surface of solid modia (e.g. agar) or
	submerged in nutrient rich, espectically balanced broths. Unsurprisingly
	these studies have largely failed to identify the processes important to
	the airborne spread phase of infection
	Combining molecular microbiology and functional genomics and using a
	state-of-the-art aerosol droplet generation and control system
	developed in Bristol (CELEBS) we aim to study how airborne bacteria
	including Bordetella pertussis. Haemophilus influenzae, and Moraxella
	catarrhalis adapt, or are selected for phenotypically, during airborne
	transmission. The CELEBS system generates individual aerosol droplets in
	which single, or a few, microbes are trapped. The aerosols can be
	generated using carefully formulated fluids, designed to match the
	composition of respiratory fluids. The environmental conditions (e.g
	temperature, humidity) can be controlled and in this system the aerosol
	droplets undergo dehydration creating the large changes in internal
	conditions experienced by microbes during natural aerosol transmission.
	Understanding the phenotypic differences displayed by airborne
	organisms could better inform vaccine design, infection control
	procedures, and epidemiological modelling, and facilitate the rational
	design of drugs or even engineering strategies (e.g. heating and air
	conditioning usage in public spaces) to reduce the longevity of airborne
	organisms, thereby reducing their transmission rate.
	In this project, we will explore the following aims:
	Aim 1. To determine the survival of bacteria in aerosols, and the impact
	of temperature and humidity. We will subject strains of B. pertussis, H.
	influenzae and M. catarrhalis to a range of temperature and humidity
	conditions reflecting those found indoors and outdoors during peak

	disease months in the UK. Using the CELEBS platform, the survival of
	bacteria in aerosols will be compared. The aerosols will be generated
	using mimics of respiratory fluids.
	Aim 2. Transcriptional profiling of adaptation to the aerosol
	environment. Using the latest RNA sequencing approaches for use on
	low biomass samples, the processes involved in adaptation of the
	bacteria to aerosol survival will be defined.
	Aim 3. Determine the microbial factors and processes required for
	bacterial survival. Information from the transcriptional profiling in Aim 2
	will be used to identify microbial factors and processes involved in
	adaptation to the aerosol environment. Their involvement will be
	validated by constructing defined mutations in these factors or
	regulators and comparing aerosol survival of mutants to the vvi.
	The project others excellent opportunities for the student to develop
	ownership and to direct the project. They will have scope to locus on
	one of two bacterial species of to identify other bacterial respiratory
	research specific microhial factors and test their involvement in aerosol
	survival. They will have scope to focus on the conditions experienced by
	the bacteria within aerosols and focus on defining the role of specific
	ions or molecules and/or developing novel formulations of artificial
	respiratory fluids. The project can pivot to focus on the functional
	genomics aspect, for example using high throughput mutation screening.
	Supervisory Team
Lead Supervisor	Supervisory Team
Lead Supervisor Name	Supervisory Team Professor Andrew Preston
Lead Supervisor Name Affiliation	Supervisory Team Professor Andrew Preston Bath
Lead Supervisor Name Affiliation College/Faculty	Supervisory Team Professor Andrew Preston Bath Faculty of Science
Lead Supervisor Name Affiliation College/Faculty Department/School	Supervisory Team Professor Andrew Preston Bath Faculty of Science Department of Life Sciences
Lead Supervisor Name Affiliation College/Faculty Department/School Email Address	Supervisory Team Professor Andrew Preston Bath Faculty of Science Department of Life Sciences a.preston@bath.ac.uk
Lead Supervisor Name Affiliation College/Faculty Department/School Email Address Co-Supervisor 1	Supervisory Team Professor Andrew Preston Bath Faculty of Science Department of Life Sciences a.preston@bath.ac.uk
Lead Supervisor Name Affiliation College/Faculty Department/School Email Address Co-Supervisor 1 Name	Supervisory Team Professor Andrew Preston Bath Faculty of Science Department of Life Sciences a.preston@bath.ac.uk
Lead Supervisor Name Affiliation College/Faculty Department/School Email Address Co-Supervisor 1 Name Affiliation	Supervisory Team Supervisory Team Professor Andrew Preston Bath Faculty of Science Department of Life Sciences a.preston@bath.ac.uk Dr Darryl Hill Bristol
Lead Supervisor Name Affiliation College/Faculty Department/School Email Address Co-Supervisor 1 Name Affiliation College/Faculty	Supervisory Team Professor Andrew Preston Bath Faculty of Science Department of Life Sciences a.preston@bath.ac.uk Dr Darryl Hill Bristol Faculty of Life Sciences
Lead Supervisor Name Affiliation College/Faculty Department/School Email Address Co-Supervisor 1 Name Affiliation College/Faculty Department/School	Supervisory Team Professor Andrew Preston Bath Faculty of Science Department of Life Sciences a.preston@bath.ac.uk Dr Darryl Hill Bristol Faculty of Life Sciences School of Cellular and Molecular Medicine
Lead Supervisor Name Affiliation College/Faculty Department/School Email Address Co-Supervisor 1 Name Affiliation College/Faculty Department/School Co-Supervisor 2	Supervisory Team Professor Andrew Preston Bath Faculty of Science Department of Life Sciences a.preston@bath.ac.uk Dr Darryl Hill Bristol Faculty of Life Sciences School of Cellular and Molecular Medicine
Lead Supervisor Name Affiliation College/Faculty Department/School Email Address Co-Supervisor 1 Name Affiliation College/Faculty Department/School Co-Supervisor 2 Name	Supervisory Team Professor Andrew Preston Bath Faculty of Science Department of Life Sciences a.preston@bath.ac.uk Dr Darryl Hill Bristol Faculty of Life Sciences School of Cellular and Molecular Medicine
Lead Supervisor Name Affiliation College/Faculty Department/School Email Address Co-Supervisor 1 Name Affiliation College/Faculty Department/School Co-Supervisor 2 Name Affiliation	Supervisory Team Professor Andrew Preston Bath Faculty of Science Department of Life Sciences a.preston@bath.ac.uk Dr Darryl Hill Bristol Faculty of Life Sciences School of Cellular and Molecular Medicine
Lead Supervisor Name Affiliation College/Faculty Department/School Email Address Co-Supervisor 1 Name Affiliation College/Faculty Department/School Co-Supervisor 2 Name Affiliation College/Faculty	Supervisory Team Professor Andrew Preston Bath Faculty of Science Department of Life Sciences a.preston@bath.ac.uk Dr Darryl Hill Bristol Faculty of Life Sciences School of Cellular and Molecular Medicine
Lead Supervisor Name Affiliation College/Faculty Department/School Email Address Co-Supervisor 1 Name Affiliation College/Faculty Department/School Co-Supervisor 2 Name Affiliation College/Faculty Department/School	Supervisory Team Professor Andrew Preston Bath Faculty of Science Department of Life Sciences a.preston@bath.ac.uk Dr Darryl Hill Bristol Faculty of Life Sciences School of Cellular and Molecular Medicine
Lead Supervisor Name Affiliation College/Faculty Department/School Email Address Co-Supervisor 1 Name Affiliation College/Faculty Department/School Co-Supervisor 2 Name Affiliation College/Faculty Department/School Co-Supervisor 3	Supervisory Team Professor Andrew Preston Bath Faculty of Science Department of Life Sciences a.preston@bath.ac.uk Dr Darryl Hill Bristol Faculty of Life Sciences School of Cellular and Molecular Medicine
Lead Supervisor Name Affiliation College/Faculty Department/School Email Address Co-Supervisor 1 Name Affiliation College/Faculty Department/School Co-Supervisor 2 Name Affiliation College/Faculty Department/School Co-Supervisor 3 Name	Supervisory Team Professor Andrew Preston Bath Faculty of Science Department of Life Sciences a.preston@bath.ac.uk Dr Darryl Hill Bristol Faculty of Life Sciences School of Cellular and Molecular Medicine
Lead Supervisor Name Affiliation College/Faculty Department/School Email Address Co-Supervisor 1 Name Affiliation College/Faculty Department/School Co-Supervisor 2 Name Affiliation College/Faculty Department/School Co-Supervisor 3 Name Affiliation	Supervisory Team Professor Andrew Preston Bath Faculty of Science Department of Life Sciences a.preston@bath.ac.uk Dr Darryl Hill Bristol Faculty of Life Sciences School of Cellular and Molecular Medicine
Lead Supervisor Name Affiliation College/Faculty Department/School Email Address Co-Supervisor 1 Name Affiliation College/Faculty Department/School Co-Supervisor 2 Name Affiliation College/Faculty Department/School Co-Supervisor 3 Name Affiliation College/Faculty	Supervisory Team Professor Andrew Preston Bath Faculty of Science Department of Life Sciences a.preston@bath.ac.uk Dr Darryl Hill Bristol Faculty of Life Sciences School of Cellular and Molecular Medicine