Project Details		
Project Code	MRCIIAR25Br Spencer	
Title	Small-Molecule G-Quadruplex (G4) Ligands as Candidate Antibacterials	
	for Resistant Bacteria	
Research Theme	Infection, Immunity, Antimicrobial Resistance & Repair	
Summary	Increasing resistance makes developing new antibiotics, that kill bacteria	
	by different mechanisms from existing agents, a public health priority. G-	
	quadruplexes (G4s) are specific nucleotide structures, formed by	
	guanine-rich sequences, that represent potential antibacterial targets as	
	their stabilisation by small-molecules disrupts cellular processes (DNA	
	replication, transcription). We have identified several small molecules	
	with antibacterial activity that bind G-quadruplex sequences in vitro.	
	This project combines imaging, whole-genome sequencing and	
	proteomics, together with antibacterial susceptibility assays and	
	investigations of resistant mutants; to investigate their cellular targets	
	and killing mechanisms and assess the potential of G4 ligands for	
	development of new generations of antibiotics.	
Description	Bacterial antibiotic resistance is a global public health emergency that	
	already causes 1.3m deaths annually. The problem is exacerbated by	
	continuing failure to develop new antibiotics, especially drugs with novel	
	modes of action that evade resistance to agents in current use. G-	
	quadruplexes (G4s) are distinctive nucleic acid structures that form	
	when guarine-rich sequences associate, and can be stabilised by binding	
	of small-molecule ligands. G4 structures call disrupt biological processes	
	such as DNA replication and transcription, are over-represented in	
	recognised as notential theraneutic targets for conditions such as	
	cancer: hut are less studied in hacteria. This project investigates	
	interactions of G4-binding ligands with bacteria and with bacterial G4	
	sequences in vitro, seeking to understand the antibacterial activity of	
	specific G4 ligands and how this might be exploited in new generations	
	of antibacterial drugs.	
	In previous work we have identified several series of G4 ligands with	
	variable activity towards Gram-negative (e.g. Escherichia coli) and Gram-	
	positive (Staphylococcus aureus) target species, and that vary in their in	
	vitro interactions with oligonucleotides containing bacterial G4	
	sequences. This project applies a range of approaches to investigate the	
	mode of antibacterial action and cellular targets of these agents and	
	related molecules, their susceptibility to resistance development; and	
	ultimately assess the potential for G4 ligands to provide the basis for	
	new antibacterial drugs.	
	Initial experiments will use antibacterial susceptibility assays to establish	
	the spectrum of activity of our panel of G4 ligands against laboratory	
	(type) and clinical strains of target bacteria. Based on the results of these	
	experiments, the most active combinations of small molecule and	
	imaging and multi-omic methods to establish mode of action. We will	
	first use Rectarial Cytological Profiling (PCD) to compare the	
	morphological response of bacteria challenged with GA ligands to those	
	to agents with known modes of action: and combine this with proteomic	
	investigations of bacteria challenged with G4 ligands compared to	
	to agents with known modes of action; and combine this with proteomic investigations of bacteria challenged with G4 ligands, compared to	

	wayneed controls to establish offerts when some owneed on
	Subsequently we will use whole-genome sequencing of G4-ligand
	exposed bacteria to look for binding sites in bacterial genomes (that we
	expect to identify through e.g. changes in short-read density); and
	RNAsed to validate and extend findings from proteomics and establish
	the extent to which effects on protein expression operate at the
	transcriptional and/or translational levels. Based on the results of these
	whole-cell studies we will identify GA sequences that are the strongest
	candidate targets for ligand hinding and test their interactions with GA
	ligands in vitro (measuring ligand binding to synthetic oligonucleotides
	hy spectroscopic methods) and in bacterial cells and extracts using
	reporter constructs containing candidate G4 sequences. These data will
	identify GA sequences targeted by our small-molecule ligands, and
	establish the cellular consequences of these interactions
	In parallel we will investigate the suscentibility of G4 ligands to
	resistance development by target bacteria, based on the hypothesis that
	G4 ligands may hind to multiple nucleotide sequence targets in the
	hacterial cell and so he at reduced risk of resistance development as
	multiple mutations would be required to abolish activity. We will use
	serial passage (exposure to increasing concentrations of antibiotics) to
	generate strains of bacteria with reduced susceptibility to antibacterial
	G4 ligands, and whole-genome sequencing to identify mutations
	potentially associated with resistance. Involvement of such mutations in
	resistance can be confirmed by complementation experiments
	reintroducing the wild-type gene to mutant strains, or by generating the
	equivalent knock-outs or mutants in susceptible (wild-type)
	backgrounds. Collectively these experiments will constitute a rigorous
	investigation of the mode of action of antibacterial G4 ligands and
	provide a basis on which to assess the development potential of the G4-
	targetting strategy and/or specific G4 ligands.
	The project provides training in imaging, multi-omic, biophysical and
	(molecular) microbiological methods in the context of a multidisciplinary
	environment of established collaboration between synthetic chemistry
	(Galan) and bacteriology (Spencer) research groups, with Feil providing
	expertise in next-generation sequencing. We expect students to develop
	the direction of the project by inputting into key decision points
	including the choice of ligand, pathogen (Gram-positive versus Gram-
	negative) and methodology (imaging/multi-omics/reporter assay) on
	which they will primarily focus. Knowledge transfer and impact
	opportunities arise through opportunities to participate in the Bristol
	and GW4 antimicrobial resistance (AMR) networks, that bring together
	local and regional AMR researchers, including clinicians, across multiple
	disciplines.
Lood Supervisor	Supervisory Team
Lead Supervisor	Drofessor James Spansor
Affiliation	Priotessol James Spencer
	Health and Life Sciences
Department/School	Cellular and Molecular Medicine
Email Address	lim Spencer@bristol.ac.uk
Linali Audress	าการคุณตรายเกิดเล้าสุด

Co-Supervisor 1		
Name	Professor Carmen Galan	
Affiliation	Bristol	
College/Faculty	Faculty of Science and Engineering	
Department/School	School of Chemistry	
Co-Supervisor 2		
Name	Professor Ed Feil	
Affiliation	Bath	
College/Faculty	Faculty of Science	
Department/School	Department of Life Sciences	
Co-Supervisor 3		
Name		
Affiliation		
College/Faculty		
Department/School		