	Project Details
Project Code	MRCIIAR25Ex Johnson
Title	Uncovering new genetic mechanisms of beta-cell autoimmunity to better understand type 1 diabetes
Research Theme	Infection, Immunity, Antimicrobial Resistance & Repair
Summary	This project uses a unique collection of samples from people with diabetes to address a fundamental question: What are the genetic mechanisms underpinning beta-cell autoimmunity? Over a century since the discovery of insulin, and four decades since the recognition that type 1 diabetes (T1D) is an autoimmune disease, the mechanisms underlying T1D remain unsolved.
	By identifying new genetic forms of autoimmune diabetes, you will develop a powerful combination of skills in genomics, immunology, and clinical research, providing new diagnoses to these families and uncover new mechanisms of beta-cell destruction - the first step towards the ultimate goal of preventing T1D.
Description	 Background: The mechanisms that lead to autoimmune beta-cell destruction in T1D remain poorly understood. It is known that there are different routes that lead to autoimmune beta-cell destruction, and increasingly it is recognised that treatment to prevent this 'friendly-fire' may have to be tailored an individuals' specific form of autoimmunity. When diabetes presents as part of a syndrome of autoimmunity it is often caused by a single genetic variant. This is termed monogenic autoimmune diabetes, which generally presents early in childhood with complex disease that is difficult to manage clinically. Identifying and diagnosing monogenic autoimmunity can allow for tailored treatments for individual patients, improving clinical outcomes. The genetic changes resulting in monogenic autoimmune diabetes impact a specific pathway that results in a loss of immune regulation leading to beta cell autoimmunity. These unique individuals living with rare monogenic conditions offer a window to understanding the diverse mechanisms that underlie more common forms of autoimmunity such as type 1 diabetes. Thus, these identified mechanisms may be exploited in developing therapies to prevent type 1 diabetes. To date, the Exeter team have published 4 novel genetic causes of monogenic autoimmune diabetes, with a further 3 unpublished genes identified gene variants contribute to beta-cell autoimmunity. Key research question & project aims: This project involves studying a unique collection of patient samples to answer a key outstanding question; What are the genetic mechanisms that underlie for gene discovery from an existing cohort 1. Identify families for gene discovery from an existing cohort 2. Robust analysis of whole genome sequencing data to identify new candidate genes

3. Replicate novel genetic findings in the wider Exeter cohort
(>1000 individuals)
4. Characterise genetic variants through analysis of clinical data
and functional immune studies
The first stage of this project will be to select 60 families for WGS from
our cohort of >1000 infancy-onset diabetes cases in whom the known
causes have been ruled out. The student will use low polygenic risk of
T1D, presence of shared additional features (>25% cohort are
syndromic), and/or multiple affected individuals to identify families with
the highest likelihood of a novel cause. This will provide a key upfront
opportunity for the student to gain knowledge of the clinical and
immunological components of monogenic autoimmune diabetes and
take ownership of the project.
This will be followed by robust, careful analysis of the whole genome
sequencing data using the most up-to-date bioinformatics tools to
identify the causative variant. The student's toolbox will include cutting-
edge genetic methods for in silico variant interpretation (e.g.
AlphaMissense, CADD, SpliceAI), homozygosity mapping, copy-number
variant analysis and statistical gene burden testing. We anticipate the
identification of at least one novel genetic cause (see power calculation
below).
The third stage will be to replicate novel genetic findings in of individuals
with infancy onset diabetes (>1000 cases) to identify further families
with a genetic variant in the same gene. This will be achieved through
molecular genetics approaches including genotyping, PCR and
sequencing and droplet digital PCR. They will then perform analysis of
already collected clinical and biomarker data to understand the clinical
phenotype.
The student will then characterise at least three candidate genes in
tandem (either newly identified or, in the unlikely event none are found,
using the 3 previously identified but as-yet uncharacterised), to uncover
how the genetic variant impacts immune responses. Specific approaches
will be gene-dependent, but are likely to include modelling mutations in cell-lines, addition of agonists/antagonists to NOD mice to assess impact
on cytokine secretion and gene expression, profiling the immune system
in the affected individuals through immune cell or DNA-based
approaches.
The successful student will learn molecular techniques and data analysis
methods that are at the forefront of human disease gene discovery. The
project will have a direct impact on people with diabetes, providing new
genetic diagnoses to families and facilitating testing of new genes for
newly diagnosed individuals by demonstrating causality. It will also
highlight new genetic mechanisms for autoimmune diabetes, improving
our understanding of type 1 diabetes.
Power calculation:
Statistical power in gene discovery is a function of gene variant
frequency and sample size. The student will select the 60 probands with
highest likelihood of a novel genetic cause. If 10% of cases are explained
by mutations in a gene, there is 99% probability to detect 2 probands
with the same genetic aetiology, and 95% probability to detect 3. If 5%
with the same genetic aetiology, and 95% probability to detect 5. If 5%

	of cases are explained by variants in a gene, there is 81% probability to detect 2 probands in the cohort with the same genetic aetiology, and 58% probability to detect 3 [PMID: 30032240].	
Supervisory Team		
Lead Supervisor		
Name	Dr Matthew Johnson	
Affiliation	Exeter	
College/Faculty	Faculty of Health and Life Sciences	
Department/School	Clinical and Biomedical Sciences	
Email Address	m.johnson@exeter.ac.uk	
Co-Supervisor 1		
Name	Professor Sarah Flanagan	
Affiliation	Exeter	
College/Faculty	Faculty of Health and Life Sciences	
Department/School	Clinical and Biomedical Sciences	
Co-Supervisor 2		
Name	Dr James Pearson	
Affiliation	Cardiff	
College/Faculty	School of Medicine	
Department/School	Division of Infection and Immunity	
Co-Supervisor 3		
Name	Dr Elisa De Franco	
Affiliation	Exeter	
College/Faculty	Faculty of Health and Life Sciences	
Department/School	Clinical and Biomedical Sciences	