Project Details		
Project Code	MRCNMH25Br Mifsud	
Title	Exploring the role of hyaluronan in cognition across the lifespan.	
Research Theme	Neuroscience & Mental Health	
Summary	Hyaluronan (HA) is a structural component found in the spaces between	
	the cells. HA is involved in a range of physiological functions that depend	
	on the length of HA present. HA plays a significant role in cognition, the	
	ability to acquire and use knowledge productively, but the	
	cellular/molecular mechanisms behind this association remain ill-	
	defined. Understanding these mechanisms is important because	
	cognitive decline is associated with poor health/wellbeing, with age	
	being a major risk factor. This project will deliver training in highly	
	desirable experimental skills, linking fundamental mechanistic studies in	
	vivo with molecular epidemiological studies of human cohorts.	
Description	Good cognitive health, the ability to think, learn and remember, is of	
	vital importance across species, contributing to a productive life and	
	sense of wellbeing. Ageing is a major risk factor for poor cognition, which	
	has a negative impact on quality of life. The hippocampus is a critical	
	area of the brain associated with cognitive function and has been	
	identified as a primary location mediating aspects of cognition	
	vulnerable to ageing, such as spatial-dependent learning. Hyaluronan	
	(HA), is a principal component of the extracellular matrix in the brain,	
	with diverse functions dependent on its molecular weight; short HA	
	chains exert stimulatory actions such as inducing proliferation,	
	inflammation, and angiogenesis whereas longer forms are more	
	stabilising, facilitating adaption of networks, central maturation and	
	Despite growing evidence supporting the importance of HA in	
	bippocampal-dependent cognition understanding of how HA is	
	regulated in the brain, and how it is affected by cognitive challenges and	
	ageing remains noor Pilot work conducted by the Lead Supervisor	
	indicates that snatial learning induces transient remodelling of the	
	hippocampal HA environment, in a transcription-dependent manner.	
	which is likely facilitating the adaptive learning process. Furthermore, an	
	additional. currently underpowered study indicates that HAS2 mRNA	
	expression maybe downregulated in older rats, hinting that the	
	detrimental effects of ageing on cognition may be mediated by changes	
	in the hippocampal HA.	
	This PhD studentship aims to build on these exciting studies to	
	investigate the molecular mechanisms underpinning the observed gene	
	expression changes to HA-related genes following spatial learning. They	
	will determine if these are functionally relevant for adaptive learning,	
	investigate the impact of age, and determine the translatability of these	
	finding in the human population.	
	The specific objectives that the student will be working towards are:	
	1.To determine the cellular origin of the observed changes in HA-related	
	gene expression following spatial learning in the rodent hippocampus.	
	2.To investigate the (epi)genetic mechanism(s) responsible for regulating	
	HA-related gene expression following spatial learning.	

3.To determine the impact of age on the hippocampal HA environment
and expression of HA-related genes and if this is mediating, in part, age-
related cognitive decline.
4.To determine if (epi)genetic mediators of hippocampal HA expression
(i.e. preidentified (epi)genetic markers known to affect HA-related gene
expression identified in rodents from Obj 2 and/or wider literature) are
causally associated with cognition, and mediating the detrimental effect
of age on human cognitive function.
Research activities undertaken by the student to address these
objectives will be confirmed following the prep period and directed by
the student. There is a good deal of flexibility in the project depending
on the background or interests of the student, and the outline below is
just one format the project could take.
The student will be required to undertake Home Office training modules
in the first year to obtain a personal licence as a legal requirement to
nerform the experiments in vivo that are required for this project
Feasible options to address the objectives above include:
Obj.1: Use of RNAScope technology (advanced in situ hybridisation
technique) to compare spatial RNA expression profiles of HA-related
genes with immunofluorescent markers (NeuN, GEAP etc.) to identify
the cellular origin of changes in HA-related gene transcription in the
hippocampi of rodents after spatial learning compared with non-
learning controls.
Obi.2: Literature review to identify mechanisms of (epi)genetic (DNA
methylation, histone associations, SNP, indels, structural variants)
regulation of HA-related genes in other tissues and determine relevance
in brain. This is likely to include an intervention study incorporating a
manipulation to the epigenetic landscape to understand causality of
mechanisms. Quantitative PCR can be used to quantify mRNA and
microRNA expression. DNA bisulphite conversion with pyrosequencing
and/or long read sequencing using the in-house Oxford Nanopore
Gridlon can also be considered to address this objective.
Obj.3: Young (12 week), middle-aged (9 months) and older (18 months)
rats undergoing spatial learning could be used with or without a
manipulation to HA environment. Such manipulations could include
targeting important epigenetic processes identified in Obj. 2, treatment
with 4-MU (HA synthase inhibitor) or stimulation of HA synthesis
respectively to determine the relationship between ageing, hippocampal
HA and spatial learning. HA concentration will be measured by ELISA and
HA molecular weight by SS-nanopore technology. Depending on the
student's personal circumstances, availability of external funds, and
research interests, this could involve an in-person or remote visit to
Wake Forest University, USA where the molecular weight analysis is
undertaken.
Obj.4: Relevant human cohort datasets can be used to assess the links
between (epi)genetic proxies for differential hippocampal HA levels and
measures of cognitive function. Inclusion criteria and outcome measures
will be determined and relevant epidemiological analyses performed to
determine any putative causal relationship between HA by (epi)genetic
proxy, cognition and ageing. The student will have the option to travel to

	Bath or complete this objective remotely under the guidance of Co-	
Supervisory leam		
Lead Supervisor		
Name	Dr Karen Mifsud	
Affiliation	Bristol	
College/Faculty	Faculty of Health Sciences	
Department/School	Bristol Veterinary School	
Email Address	K.Mifsud@bristol.ac.uk	
Co-Supervisor 1		
Name	Professor Esther Walton	
Affiliation	Bath	
College/Faculty	Faculty of Humanities and Social Sciences	
Department/School	Department of Psychology	
Co-Supervisor 2		
Name		
Affiliation		
College/Faculty		
Department/School		
Co-Supervisor 3		
Name		
Affiliation		
College/Faculty		
Department/School		