Project Details		
Project Code	MRCNMH25Br Purple	
Title	Using machine learning to investigate the role of cell assemblies in	
	processing traumatic experiences and the development of post-	
	traumatic stress disorder	
Research Theme	Neuroscience & Mental Health	
Summary	Groups of neurons known as cell assemblies become active during our	
	daily experiences and reactivate over time, including during sleep. Whilst	
	this reactivation is known to be important for the processing and	
	consolidation of memory, little is known of how this occurs in the	
	context of a traumatic experience. This project aims to develop machine	
	learning algorithms to identify cell assemblies and track their	
	reactivation during wake and sleep after a trauma-like experience in	
	rats. This will provide essential insights into how traumatic experiences	
	are processed within the brain and how this contributes to the	
	development of post-traumatic stress disorder.	
Description	Over 80% of people experience a traumatic event during their lifetime;	
	of these, up to ~10% develop post-traumatic stress disorder (PTSD),	
	suffering distressing flashbacks, avoidance, hyperarousal, and	
	nightmares. Crucially, current therapies fail to deliver long-term control	
	of symptoms in ~50% of sufferers. Defining determinants of vulnerability	
	to PTSD and designing novel, biologically informed prevention and	
	treatment strategies is essential.	
	Sleep supports offline processing of daily experience; its disruption can	
	therefore contribute to the maladaptive memory processing that	
	functionally organics to encode information, that are active during	
	loarning reactivate during clean. This occurs when the coordination of	
	network oscillations including ripples, spindles, and slow-waves	
	optimise limbic-cortical dialogue and tune the integration of memory	
	into long term storage. Replay of hippocampal place cell sequences	
	during non-rapid eve movement sleen (NREM) supports consolidation of	
	spatial memories. In contrast, there is significant evidence from human	
	studies that RFM sleep, and theta activity, are instrumental in processing	
	emotional memories and reducing emotional tone. However, sleep	
	reactivation in this context has only been partially explored and no	
	studies have assessed this in relation to trauma.	
	Your project will involve computational neuroscience and the	
	development of machine learning algorithms to optimise the detection	
	of cell assemblies that become active during trauma exposure in a rat	
	model of PTSD. Detecting cell assemblies during trauma exposure and	
	tracking assembly reactivation across time including during sleep, will	
	provide essential insights into how traumatic memories are processed,	
	pinpointing precise temporal and anatomical targets for therapeutic	
	intervention. Further, there are currently no methods to assess trauma-	
	related intrusive memories or nightmares in animals, which are both key	
	symptoms of PTSD. Although it is unclear whether replay of task-related	
	activity during sleep (or wake) represents conscious recollection of the	
	event, evidence suggests replay is related to memory retrieval.	
	Identifying the frequency of assembly reactivation after trauma	
	exposure may reveal unique differences between vulnerable and	

	resilient animals, providing novel evidence of 'intrusion-like' activity and
	further improving translatability to human psychopathology.
	Your project will involve an interdisciplinary team and collaboration
	between Bristol, Pisa and Cardiff. This project can be broadly split into
	three primary areas with increasing opportunity for independence and
	student ownership and direction throughout.
	Objective 1: The Introduction of Neuropixels silicone probes, with over
	900 electrode recording sites, has provided a step change in the number
	of neurons we can record from in freely behaving animals. While giving
	the opportunity to better characterize ongoing mental processes, the
	analysis of datasets of this size comes with computational challenges.
	Co-supervisor Dr Russo has previously developed a machine learning
	algorithm to detect cell assemblies across multiple timescales and lag
	constellations. The first aim of your project will be to develop this
	algorithm further, tailoring it to the analysis of large datasets. To this
	aim, you will be encouraged to actively propose and develop new
	approaches and test them with the supervision of Dr Russo. After
	validating the new algorithm, you will apply it on existing Neuropixels
	track assembly reactivations across time
	Chiestive 2: We will callect new Neuronivels data recording from limbic
	areas of the rat brain during exposure to a predatory threat trauma like
	naradigm. Subsequent recordings will also be conducted during sleen
	and free behaviour over the course of a week. Using your improved
	algorithm you will analyse cell assembly activations and reactivations
	during these recordings. This will allow us to answer key questions such
	as: Do trauma-related assemblies reactivate during specific stages or
	oscillations of sleen? How do assembly reactivation natterns differ
	between animals that go on to develop PTSD-like phenotypes and
	animals that remain resilient?
	Objective 3: The final objective will test the potential to manipulate cell
	assembly reactivation. You will work with Dr Purple. Dr O'Neill and Prof
	lones to develop an intervention (e.g. conditioned auditory stimulation
	or optogenetics) to interrupt or enhance cell assembly reactivation.
	providing key insight into their causal effects on the development of
	PTSD-like phenotypes.
	Whilst an interest in computational neuroscience and coding with
	Matlab/Python is essential for this project, the degree of involvement
	you have in conducting the in-vivo experiments and collecting data is
	flexible and dependent on your own research direction and interests.
	Location: You will primarily be based at the University of Bristol with
	regular meetings with other co-supervisors taking place online. Initial
	training and development of the algorithm will require considerable (but
	flexible) research visit/s to Sant'Anna School of Advanced Studies in Pisa.
	Supervisory Team
Lead Supervisor	
Name	Dr Ross Purple
Affiliation	Bristol
College/Faculty	Lite Sciences
Department/School	Physiology, Pharmacology and Neuroscience
Email Address	ross.purple@bristol.ac.uk

Co-Supervisor 1		
Name	Dr Eleonora Russo	
Affiliation	Other	
College/Faculty	NA	
Department/School	The BioRobotics Institute	
Co-Supervisor 2		
Name	Dr Joseph O'Neill	
Affiliation	Cardiff	
College/Faculty	College of Biomedical and Life Sciences	
Department/School	School of Psychology	
Co-Supervisor 3		
Name	Professor Matt Jones	
Affiliation	Bristol	
College/Faculty	Life Sciences	
Department/School	Physiology, Pharmacology and Neuroscience	