Project Details		
Project Code	MRCNMH25Ex Gold	
Title	The consequence of mitochondrial import failure in neurogenerative disease	
Research Theme	Neuroscience & Mental Health	
Summary	Mitochondria provide energy essential for life and are dependent on the delivery of proteins from the cytosol for their biogenesis, maintenance and regeneration. Defects in protein import affect cellular bioenergetics and thereby cause muscular, neurological and age-related degenerative diseases. In this project, the effects of defective protein import will be studied at both the cellular and protein structure level using state-of-the-art methodologies including CRISPR-based genome editing of human cells for cryo-electron microscopy. The results will boost understanding of how mitochondrial protein import is essential for mitochondrial homeostasis and health, and how import failure relates to disease.	
Description	 Background: According to The Endosymbiotic Theory, mitochondria arose due to the intracellular enslavement of bacteria. During eukaryotic evolution, the mitochondrial genome was significantly reduced, leading to a dependence on cytosolic protein synthesis, protein targeting and import for >99% of mitochondrial protein synthesis, protein targeting and import for >99% of mitochondrial proteins. Mitochondrial protein import machinery in the outer and inner membranes evolved to facilitate mitochondrial biogenesis. The Translocase of the Outer Membrane (TOM) complex serves as the entry gate for most mitochondrial proteins, with pathways diverging depending on the protein's destination. Mitochondrial dysfunction, a hallmark of neurodegeneration, is increasingly linked to protein import machinery malfunctions, with catastrophic effects on health (1). The Gold lab has developed methods to visualise protein import on mitochondria by cryo-electron tomography (cryoET) (2–4) and has investigated neurodegenerative-related mitochondrial changes using the same methodology (5). In Alzheimer's disease, amyloid precursor protein (APP) accumulates within mitochondria, interacting with both outer and inner membrane protein import machinery (6). Similarly, mitochondria from Huntington's disease brains exhibit aggregation-prone Huntingtin protein (Htt) variants that inhibit import at the mitochondrial inner membrane (7). The Collinson lab has shown that a Tau protein associated with Alzheimer's Disease interacts with the TOM complex (8), disrupting import and reducing neuronal complexity (e.g. less branching and fewer synapses). Protein import is also crucial for mitochondrial quality control. In healthy cells, respiratory chain complexes of the mitochondrial inner membrane generate a membrane potential and ultimately production of ATP. A collaboration between the Gold and Collinson labs has revealed large-scale structural changes in respiratory chain proteins in a model representing ageing and ag	

removal by mitophagy. Several PINK1 mutations are linked to early onset Parkinson's Disease (11).
Whilst numerous studies have linked import dysfunction and impaired
ATP production to neurodegenerative disease, the impact on
mitochondrial ultrastructure and respiratory chain proteins remains
unclear. Building on our existing collaboration, understanding the links
between protein import and the structure and arrangement of
respiratory chain proteins will provide further insight into the etiology of
neurodegenerative diseases.
The key questions for this project are:
1. What is the consequence of mitochondrial import failure on the
mitochondrial network, mitochondrial ultrastructure and respiratory
chain protein structures?
2. How do these changes compare to mitochondrial abnormalities
seen in various neurodegenerative diseases?
Objectives:
We will work with established human cell culture that has been used as
a model to measure the effects of import failure in the Collinson lab (12).
Cells will be transfected and cultured using established conditions
designed to perturb the protein import machinery (8,12). This will
include the expression of protein trapping constructs that arrest during
protein import, as well as the production of aggregation prone proteins
linked to neurodegeneration. Analysis of compromised HeLa cells by
fluorescence microscopy revealed that both the protein trap and the
aggregation-prone Tau caused similar effects, namely mitochondrial
fragmentation (8,12).
This studentship aims to advance the analysis of import-compromised
HeLa cells by transitioning to structural cell biology, enabling a higher
resolution examination of the impact on mitochondrial morphology. We
will leverage use of brand-new technology that will shortly become
available through a successful GW4 application to UKRI-BBSRC for a
cryoFIB-SEM (1 of only a handful in the UK). Cryo-FIB milling of
specimens that would otherwise be too thick to image by cryoET (e.g.
cells and tissues) generates thin lamella suitable for subsequent imaging
at high-resolution. The results will provide an extraordinary in situ view
facilitating an investigation of the effects of import machinery
perturbation on mitochondrial network formation, ultrastructure, and
proteins of the respiratory chain.
This project offers outstanding opportunities for training within the MRC
cross-cutting themes of data science, interdisciplinary skills and
translation and innovation (strategic skills section).
Where the student can steer the project:
The student can design translocation-arrested substrates to focus on an
area of neurodegenerative disease according to interest. The team will
support the student with ideas development regarding specific
mutations or substrates to study. They can revisit this and design
additional substrates as the project and their research evolves.
References:
1. Lin, M. et al. Nature (2006).
2. Gold, V. et al. Methods Mol Biol (2017).
3. Gold, V., et al. A. EMBO Rep (2017).

	4. Gold, V. et al. Nat Commun (2014).	
	5. Stockburger, C. et al. J Alz Dis (2014).	
	6. Devi, L. et al. J Neurosci (2006)	
	7. Yano, H. et al. Nat Neurosci (2014).	
	8. Needs, H. I. et al. J Cell Sci (2023).	
	9. Knapp-Wilson, A. et al. J Cell Sci (2021).	
	10. Buzzard, E. et al. In preparation.	
	11. Valente, E. M. et al. Science (2004).	
	12. Needs, H. I. et al. Nat Commun (202	
Supervisory Team		
Lead Supervisor		
Name	Dr Vicki Gold	
Affiliation	Exeter	
College/Faculty	Biosciences / HLS	
Department/School	LSI	
Email Address	v.a.m.gold@exeter.ac.uk	
Co-Supervisor 1		
Name	Professor Ian Collinson	
Affiliation	Bristol	
College/Faculty	Life Sciences	
Department/School	Biochemistry	
Co-Supervisor 2		
Name		
Affiliation		
College/Faculty		
Department/School		
Co-Supervisor 3		
Name		
Affiliation		
College/Faculty		
Department/School		