Project Details		
Project Code	MRCNMH25Ex Richards	
Title	Using machine learning to classify microglia	
Research Theme	Neuroscience & Mental Health	
Summary	During this exciting, fully-funded PhD, you will use machine learning to	
	automatically classify the state of microglia (the brain's specialised	
	immune cells). This will involve combining mathematics, computer	
	programming and artificial intelligence with real experimental data to	
	develop both supervised and unsupervised methods to predict microglial	
	state. You will have the opportunity to collaborate with researchers in	
	Exeter, Bristol, Newcastle and Leeds. This work has significant potential	
	applications throughout biology and medicine, including in drug	
	discovery, cancer and neurodegenerative conditions such as motor	
	neuron disease, Parkinson's disease and Alzheimer's disease.	
Description	Background: Microglia are the resident immune cells of the brain. They	
	adopt a wide range of phenotypes to control the brain's immune	
	response, including phagocytosing unwanted agents and releasing	
	signalling chemicals to other cells in the brain. The scientific community	
	has spent the last fifty years naively categorising microglial phenotype	
	into just two types: M1 (inflammatory) and M2 (anti-inflammatory).	
	However, recent work (including that by our collaborators) has led to the	
	revolutionary idea that microglial state should instead be a	
	"multidimensional concept", with a spectrum of states.	
	Importance: Determining how many states microglia can exist in,	
	whether these states form a continuum and being able to predict	
	microglial state is of fundamental medical importance. This is because	
	microglia play a vital role in neurodegenerative disease (including motor	
	neuron disease, Parkinson's disease and Alzheimer's disease) and cancer.	
	Improved prediction of microglial state, particularly if this can be	
	achieved from standard bright-field imaging, could revolutionise	
	diagnosis of these conditions and provide a valuable tool in the search	
	for treatments by, for example, aiding drug screening programmes.	
	Machine learning: The vision is that microglial state could be predicted	
	simply from cell shape. A human attempt to do this would be time-	
	consuming and would be affected by unconscious bias and human error.	
	Instead, what is needed is an automatic computational method. This is	
	precisely what machine learning can achieve. Preliminary results in our	
	group show that microglia can be classified with high accuracy (>93%)	
	even using single cells. The aim of this PhD is to improve this.	
	Key research questions:	
	(1) What are the best machine learning techniques for automatically	
	classifying microglial state?	
	(2) How do these optimal techniques depend on image size, imaging	
	conditions and imperfect training data?	
	(3) Can the approach be optimised to run in real time and on multiple	
	cells at the same time?	
	The approach: This PhD will leverage the opportunity presented by our	
	collaborations with Dr Kate Harris (University of Leeds) and Prof Ian	
	wood (University of Leeds). It will employ a truly multi-disciplinary	
	approach to study possible states of microglia. The student will	
	undertake a cross-disciplinary PhD, including machine learning, image	

	analysis and time-lapse imaging experiments. This approach will allow
	the student to learn a highly-desirable combination of quantitative and
	experimental skills, leading to excellent future career prospects.
	Project plan and objectives: This cross-disciplinary studentship will be
	based within the Living Systems Institute at the University of Exeter. The
	student will also spend time at the University of Bristol and with our
	collaborators at the Universities of Newcastle and Leeds. Further, the
	student will join the Exeter Health Analytics network (which the first
	supervisor leads) to obtain a broad understanding of the role of
	mathematical modelling throughout human health, and will work with
	the Institute for Data Science and Artificial Intelligence at the University
	of Exeter. The project itself will include:
	Objective 1: Creation of novel machine learning approaches, in
	particular convolutional neural networks (CNNs), to automatically
	classify microglial state based on our existing large data set of over
	20,000 microglia. This will involve exploring a number of different data
	sets and CNN architectures (LeNet-5, AlexNet, VGG-16, ResNet,
	Inception, Xception, Inception-ResNet, DenseNet and ResNeXt-50).
	Objective 2: Culturing and imaging of the human microglial HMC3 cell
	line to generate further data for training of CNNs and to test the
	accuracy of the machine learning models. Cells will be activated with
	either interferon (IFN alfa-2b) or lipopolysaccharide (LPS). Various stains
	will be used to aid identification of the cell shape, including wheat germ
	agglutinin (WGA), CellMask and Actin ReadyProbes.
	Objective 3: Design of image analysis software to automatically segment
	cells from raw microscopy images. This will be based on existing code in
	our groups. This will then be used to generate input data for the
	machine learning. Relevant techniques that will be considered include
	contrast adjustment, thresholding, morphological operations, edge
	detection, filtering, distance transforms and the watershed
	transformation.
	Objective 4 : Application of the approach to microglia in the eye. This will
	involve working in the lab of Prof Andrew Dick at the Bristol Medical
	School (THS) in the University of Bristol. This group has a microglia
	reporter mouse model that will be used to generate new images of
	microglia in the eye. The CNNs will then be retrained on this new data
	and the differences and similarities to microglia in the brain investigated.
	We have designed the project so the student will have significant scope
	to take ownership. This particularly applies to Objective 1 (where there
	are several possible machine learning approaches) and Objective 3 (with
	several image analysis options). However, objectives 2 and 4 can also be
	tailored as required. Importantly, the proportion of time spent on each
	projective can be aujusted and so the student will be able to balance the
	Supervisory Team
Lead Supervisor	
Name	Dr David Richards
Affiliation	Fxeter
College/Faculty	Faculty of Environment, Science and Economy
Department/School	Physics
Email Address	david richards@exeter.ac.uk

Co-Supervisor 1		
Name	Professor Krasimira Tsaneva-Atanasova	
Affiliation	Exeter	
College/Faculty	Faculty of Environment, Science and Economy	
Department/School	Mathematics	
Co-Supervisor 2		
Name	Professor Andrew Dick	
Affiliation	Bristol	
College/Faculty	Bristol Medical School (THS)	
Department/School	School of Cellular and Molecular Medicine	
Co-Supervisor 3		
Name		
Affiliation		
College/Faculty		
Department/School		