Project Details		
Project Code	MRCNMH25Ex Witton	
Title	Characterising a new neuroimmune pathway to treat Alzheimer's	
	disease	
Research Theme	Neuroscience & Mental Health	
Summary	Microglia are brain-resident immune cells. Alongside conventional	
	molecular signals, the latest research suggests that specific patterns of	
	brain activity can control microglia function. We have found that a type	
	of brain activity normally activated during cognition (called gamma	
	oscillations) signals to microglia via a receptor subgroup, which may	
	drive a neuroprotective response. Using a novel experimental assay	
	developed by our lab, this project will uncover how this signalling works	
	to reveal new drug targets for treating conditions where immune	
	systems in the brain malfunction, such as in Alzheimer's disease.	
Description	BACKGROUND	
	Microglia are brain-resident immune cells that provide the main form of	
	defence against neuropathology. It is well known that there is dynamic	
	crosstalk between microglia and neuronal cells that maintains brain	
	homeostasis and coordinates neuroimmune responses. Recent studies,	
	however, have identified a new form of neuron-microglia	
	communication driven by rhythmic neuronal activity. Communication	
	between neurons generates rhythmic patterns of electrical brain activity,	
	called neuronal oscillations. Studies have revealed that neuronal	
	oscillations around 40 Hz – called gamma oscillations – generate a signal	
	that regulates microglia function (PMID: 31076275). Specifically, gamma	
	oscillations induce a homeostatic and neuroprotective immune response	
	linked to enhanced microglia surveillance and phagocytosis that can	
	clear pathological proteins (like amyloid- β) in mouse models of	
	Alzheimer's disease (AD) (PMID: 27929004). This is important because	
	impaired gamma oscillations and abnormal microglia function are	
	cardinal features of neurodegenerative diseases like AD, thereby raising	
	the tantalising possibility that these diseases could be treated by	
	triggering Gamma-Activity induced Neuron-microgila Signalling	
	(nereinafter, GAINS). However, very little is known about now GAINS	
	works due to a lack of tractable models of this phenomenon. To this end,	
	we have developed a new model of GAINS in ex vivo mouse brain sinces	
	and have used it to discover that GAINS occurs via colony stimulating	
	nuclear factor kappa R (NEvR) nathway signalling (manuscript in prop.)	
	Excitingly, molecular targets of CSE1Ps and NEvP overlap with signalling	
	nathways linked to AD risk gones (PMID: 24951455, PMID: 20212221)	
	and targets of AD medicines in clinical trial (e.g. NCT0574401)	
	OUESTION & AIMS	
	The scientific question at the heart of this project is "What are the	
	specific cellular and molecular mechanisms underlying GAINS?" Building	
	on our current data, we hypothesise that GAINS is mediated by factors	
	downstream of microglial CSF1Rs that converge on NFkB nathway	
	activation. Objectives to test this hypothesis are:	
	(1) Identify molecular mediators of GAINS downstream of CSF1R	
	signalling ex vivo.	
	(2) Validate molecular mediators of GAINS in vivo.	
	· · · · · · · · · · · · · · · · · · ·	

(3) Explore the role of astrocytes as a cellular source of GAINS-evoked CSF1.

PROJECT DESIGN

Objective 1 will be tackled using ex vivo models of GAINS developed in our lab. Gamma oscillations will be induced in mouse brain slices using pharmacology and optogenetic techniques and recorded using electrophysiology, whilst changes in the properties of fluorescencetagged microglia (labelled using Alexa 488 isolectin B4) are measured using 2-photon microscopy (e.g. morphology, density, motility). Several molecular pathways link CSF1Rs to NFkB, including MAP kinase-ERK, protein kinase C, and PI3 kinase-Akt; (PMID: 35290551). We will test the role these pathways play in GAINS using commercially available inhibitors of molecules involved in each signalling pathway. For Objective 2, we will test whether GAINS is regulated by CSF1Rs and their downstream molecular targets in vivo. We will induce gamma oscillations in mice using optogenetics (mirroring our slice model) and via 40 Hz light stimulation that can drive GAINS in visual cortex (PMID: 3106275). Mice will be treated with antagonists for CSF1Rs (e.g. BLZ945) or inhibitors of their targets that block GAINS ex vivo (i.e. in Objective 1). We will also use acute in vivo 2-photon brain imaging in mice to measure microglia dynamics (e.g. motility, migration) during GAINS and when it is pharmacologically blocked.

Astrocytes are cells that provide a key source of CSF1 in the brain (PMID: 34472465). Objective 3 will leverage our ex vivo assay to test the role of astrocytes in GAINS. Specifically, we will disrupt astrocyte function during GAINS in brain slices by inhibiting astrocyte metabolism using drugs (e.g. aminoadipic acid) or viral-genetic tools developed by co-supervisor Mosienko.

STUDENT OWNERSHIP

Our project objectives are not mutually exclusive, and thus different research lines can run in parallel and be tailored to the student's interests. As the project incorporates both ex vivo (Objectives 1 & 3) and in vivo (Objective 2) models, the student can balance the focus of the project between these different types of experiment depending on their interests and prior experience. Similarly, the student can balance the focus between cellular/molecular signalling (Objectives 1 & 2) and astrocyte focussed (Objective 3) experiments in line with their interests. Additionally, whilst not an explicit focus of the project, co-supervisors Mosienko and Noble have significant molecular biology expertise to facilitate analysis of GAINS-driven changes in microglia and astrocyte gene and/or protein expression; this direction could also be facilitated by our team's active collaborations with Exeter's Complex Disease Epigenomics Group (https://www.epigenomicslab.com/) if this is of interest to the student.

OUTCOMES

The project will discover cellular and molecular mechanisms underlying a novel neuroimmune pathway that could be leveraged to treat neurodegenerative disorders characterised by aberrant gamma oscillations and disrupted neuroimmune function, like AD.

Supervisory Team	
Lead Supervisor	
Name	Dr Jonathan Witton
Affiliation	Exeter
College/Faculty	Faculty of Health and Life Sciences
Department/School	Department of Clinical and Biomedical Sciences
Email Address	j.witton@exeter.ac.uk
Co-Supervisor 1	
Name	Dr Valentina Mosienko
Affiliation	Bristol
College/Faculty	Faculty of Life Sciences
Department/School	School of Physiology, Pharmacology & Neuroscience
Co-Supervisor 2	
Name	Professor Jonathan Brown
Affiliation	Exeter
College/Faculty	Faculty of Health and Life Sciences
Department/School	Department of Clinical and Biomedical Sciences
Co-Supervisor 3	
Name	Professor Wendy Noble
Affiliation	Exeter
College/Faculty	Faculty of Health and Life Sciences
Department/School	Department of Clinical and Biomedical Sciences