Project Details		
Project Code	MRCPHS25Br Lloyd-Lewis	
Title	Under pressure: Investigating the role of tissue density and mechanics in breast cancer development	
Research Theme	Population Health Sciences	
Summary	A high breast mammographic density is a major risk factor for breast cancer, yet the underlying molecular mechanisms remain unclear. In this interdisciplinary project, the student will combine advanced methods in genetic epidemiology with lab-based cell biology techniques (e.g.	
	confocal imaging, flow cytometry, 'omics) in patient-derived breast organoids and in vivo models to investigate how increased tissue density	
Description	and stiffness predisposes the breast to tumourigenesis.	
Description	and stiffness predisposes the breast to tumourigenesis. IMPORTANCE Breast cancer is the most common cancer in women, with over 4000 new cases diagnosed monthly. As incidence rates continue to rise globally, there is an urgent need to identify new, modifiable risk factors for breast cancer prevention and early detection. A high breast mammographic density (MD) is one of the strongest risk factors for breast cancer, conferring a x4-6 increase in risk. Our recent work implied that early-life adiposity decreases breast cancer risk largely through reducing breast MD in adulthood. This finding is exciting as it suggests that adult MD is modifiable during the pubertal growth period, which might provide opportunities to intervene during adolescence to reduce lifetime MD and associated breast cancer risk. The mechanistic molecular pathways linking breast MD to cancer however remain poorly understood. Addressing this gap in knowledge is critically important as progress in this area has the potential to transform precision cancer prevention approaches in women with elevated breast MD. High MD breast is associated with increased tissue stiffness. While a stiffened extra-cellular matrix (ECM) is implicated in accelerated mammary (breast) tumour progression, how tissue stiffness regulates mammary stem cell activity and differentiation dynamics. As re-acquiring stem cell fate is considered an early step in breast cancer, this project will investigate the hypothesis that increased breast MD perturbs normal mammary stem cell activity and differentiation dynamics, and that this places the breast epithelium in a high-risk, pre- malignant state. RESEARCH TRAINING To address this hypothesis, the project will use an interdisciplinary approach that combines methods in genetic epidemiology, bioinformatics and laboratory-based techniques in molecular, cell and stem cell biology. The student will therefore acquire a versatile and highly sought-after skill set during their PhD. Aim 1. Determine the gen	
	Randomisation (MR) at the world leading MRC Integrative Epidemiology Unit at the University of Bristol will enable the student to identify genes associated with high breast MD and to test their causal association with	

	breast cancer. In addition to using the largest genetic datasets of breast	
	MD and breast cancer available, they will also map the contribution of	
	common genetic variation to breast density as detected by MRI in young	
	(age 20-22 years) nulliparous women available from the Avon	
	Longitudinal Study of Parents and Children (ALSPAC) birth cohort. This	
	unique dataset includes detailed metabolic, hormone and body fat mass	
	measurements taken at 8, 16, 18 and 25 years of age for each individual.	
	which can be used to identify novel traits associated with breast MD.	
	Aim 2. Determine whether increased tissue stiffness alters mammary	
	epithelial stem cell properties and molecular profile	
	Training in laboratory methods will allow the student to determine how	
	perturbing FCM stiffness affects mammary epithelial stem cell activity.	
	differentiation dynamics and gene expression profile. The student will	
	address this in mammary gland tissues in vivo using available genetic	
	lineage tracing mouse models, and ex vivo using patient-derived breast	
	organoid cultures. The student will gain skills in experimental cell and	
	molecular biology techniques including 3D organoid culture.	
	fluorescence confocal and light-sheet microscopy, flow cytometry.	
	immunohistochemistry, RNA-sequencing, as well as in image processing	
	and bioinformatic analysis of RNA-seg datasets.	
	Aim 3. Determine whether identified mechanically regulated genes are	
	causally associated with breast cancer	
	Following training received in earlier aims, the student will steer their	
	project to prioritise tractable genes and signalling networks of interest to	
	them for further investigation. Data collected will also inform further	
	genetic epidemiological analysis. For example, whether mechanically	
	regulated genes identified in Aim 2 are causally associated with breast	
	cancer can be investigated using MR and validated in breast cancer	
	patient datasets (e.g. The Cancer Genome Atlas). Functional	
	investigation of validated hits can subsequently be performed in	
	laboratory in vivo and in vitro models using the same techniques applied	
	in Aim 2.	
Supervisory Team		
Lead Supervisor		
Name	Dr Bethan Lloyd-Lewis	
Affiliation	Bristol	
College/Faculty	Health and Life Sciences	
Department/School	Cellular and Molecular Medicine	
Email Address	bethan.lloyd-lewis@bristol.ac.uk	
Co-Supervisor 1		
Name	Dr Rebecca Richmond	
Affiliation	Bristol	
College/Faculty	Health and Life Sciences	
Department/School	Bristol Medical School	
Co-Supervisor 2	Drafesser Diskard Clarkes r	
Affiliation	Cardiff	
Doportmont /School	School of Pioscioncos	
Namo	Dr Marina Vahistsovits	
Name		

Affiliation	Exeter
College/Faculty	
Department/School	Exeter Medical School