Project Details		
Project Code	MRCPHS25Ex Akrami	
Title	Unveiling the Biomechanics of Diabetic Foot Ulcers: Identifying Critical	
	Foot Load Profiles for Prevention and Treatment	
Research Theme	Population Health Sciences	
Summary	Diabetic foot issues pose significant challenges for patients and	
	healthcare providers. Current evaluation methods are costly, invasive,	
	and subjective. This study aims to address these problems by analysing	
	gait patterns in diabetic patients compared to healthy individuals. By	
	examining how foot ulcers affect movement and using computational	
	and experimental biomechanics simulations, we aim to understand	
	changes in load distribution within the foot. This will enhance our	
	knowledge of heel pad deformities, which contribute to diabetic foot	
	ulcers.	
Description	Approximately 10% of the NHS budget for England and Wales is	
	allocated to diabetes care, costing the healthcare system more than £1.5	
	million every hour. This expenditure amounts to an estimated £14 billion	
	annually, primarily spent on managing complications rather than	
	providing direct diabetic care. The cost of diabetes medications alone	
	has surged by nearly £500 million since 2015, underscoring the	
	escalating financial burden on the NHS. Diabetes mellitus, a chronic	
	illness affecting millions globally, leads to numerous complications,	
	including diabetic foot ulcers (DFUs). DFUs result from peripheral artery	
	disease and neuropathy, increasing the risk of infection and amputation.	
	Preventing these catastrophic outcomes necessitates early detection and	
	effective management of foot health issues.	
	Traditionally, changes in diabetic foot biomechanics have been	
	attributed to polyneuropathy, which weakens the intrinsic muscles of	
	the fool, leading to influed joint mobility (LIM) and deformities,	
	particularly in the forefoot. Certain deformities (i.e., small muscle	
	arthropathy) are associated with increased plantar pressure. These	
	conditions can cause the displacement of the plantar fat had and	
	prolanse of the metatarsal heads on the plantar surface and	
	subsequently, are precursors of foot ulceration. A LIK population study	
	of 15.692 diabetic nations found that foot deformity, along with other	
	risk factors such as peripheral arterial disease (PAD) peripheral	
	neuropathy, and insulin usage, accounts for the higher number of foot	
	ulcerations in Europeans compared with two other ethnic groups.	
	Diabetes often impairs the body's ability to heal wounds. When	
	combined with deformities that cause repeated pressure and friction,	
	even minor injuries can become chronic ulcers that are difficult to treat.	
	Early detection and management of foot deformities can prevent	
	complications. By closely monitoring and managing foot deformities,	
	healthcare providers can improve outcomes and quality of life for	
	diabetic patients while reducing the risk of serious complications and	
	associated healthcare costs.	
	Diabetic foot problems are a significant concern for both patients and	
	healthcare organisations. Current methods for evaluating foot health	
	often rely on costly procedures or subjective assessments, which can be	
	resource-intensive, time-consuming, and uncomfortable for patients.	

	This study aims to address these challenges by analysing gait patterns in diabetic patients to identify differences compared to beatthy subjects
	This apply size will be a phone to hear the program of vices on the
	This analysis will help observe now the progression of ulcers on the
	plantar surface of the feet impacts human locomotion patterns.
	Additionally, by developing computational simulations such as Finite
	Element Analysis (FEA), we can investigate changes in load patterns
	within the human foot. This will enhance our understanding of the
	initiation and progression of deformities and their severity within the
	heel pad, which contribute to the development of diabetic foot ulcers.
	Through such studies, different footwear and/or insoles can be
	prescribed to alleviate the load on diabetic feet, thereby reducing the
	likelihood of DFU progression. By leveraging these insights, we aim to
	develop a model that evaluates foot load profiles using data gathered
	from pressure sensors and other non-invasive devices. This approach will
	facilitate the early identification of abnormal pressure distributions that
	precede ulcer formation.
	The primary objectives of this study are:
	I o develop a comprehensive dataset of galt patterns and plantar
	pressure data in diabetic versus healthy patients, analysing the existing
	anomalies.
	• To create a bio-realistic finite element model of the numan foot
	of DELL These nationt-specific models, comprising hard and soft tissues
	of the foot will be developed using Magnetic Resonance Imaging (MRI)
	data aiding in understanding the mechanohiology of these changes
	• To design and manufacture natient-specific footwear that
	alleviates friction and load pressure on diabetic patients. If time permits
	the project will also investigate instrumentation of the footwear to
	monitor pressure changes over time.
	To achieve a thorough understanding of diabetes-related foot
	complications, we will collect an extensive dataset from individuals with
	diabetes, including clinical outcomes, gait analysis, and foot pressure
	readings. Pressure sensors placed in shoes or insoles will gather data
	during routine activities. We will then analyse this information to
	identify critical elements such as distribution patterns, peak pressure
	sites, and pressure application duration that influence foot load profiles.
	Using MRI data, we will develop bio-realistic models of the human foot
	to study how internal segments function during different stages of the
	gait cycle, helping to pinpoint when and where ulcers are most likely to
	develop.
	Through these comprehensive studies, our knowledge will be
	significantly enhanced, facilitating the early identification and treatment
	of diabetic foot complications. This has the potential to reduce the
	frequency of DFUs and amputations, ultimately improving patient
	outcomes and reducing healthcare costs.
Lood Currentier	Supervisory Team
Lead Supervisor	Dr Mohammad Akrami
Affiliation	
	Eaculty of Environment Science and Economy
Dopartmont /School	Department of Engineering
Department/School	

Email Address	m.akrami@exeter.ac.uk
Co-Supervisor 1	
Name	Dr Elise Pegg
Affiliation	Bath
College/Faculty	Faculty of Engineering and Design
Department/School	Department of Mechanical Engineering
Co-Supervisor 2	
Name	Professor Dominic Farris
Affiliation	Exeter
College/Faculty	Faculty of Health and Life Sciences
Department/School	Public Health and Sports Science
Co-Supervisor 3	
Name	Dr Hassan Fadavi
Affiliation	Exeter
College/Faculty	Faculty of Health and Life Sciences
Department/School	Clinical and Biomedical Sciences